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Abstract 

In this first of three papers on a full Bayesian theory 
of crystal structure determination, it is shown that all 
currently used sources of phase information can be 
represented and combined through a universal 
expression for the joint probability distribution of 
structure factors. Particular attention is given to situ- 
ations arising in macromolecular crystallography, 
where the proper treatment of non-uniform distribu- 
tions of atoms is absolutely essential. A procedure is 
presented, in stages of gradually increasing com- 
plexity, for constructing the joint probability distribu- 
tion of an arbitrary collection of structure factors. 
These structure factors may be gathered from one or 
several crystal forms of an unknown molecule, each 
comprising one or several isomorphous structures 
related by substitution operations, possibly contain- 
ing solvent regions and known fragments, and/or  
obeying a set of non-crystallographic symmetries. 
This universal joint probability distribution can be 
effectively approximated by the saddlepoint method, 
using maximum-entropy distributions of atoms 
[Bricogne (1984). Acta Cryst. A40, 410-445] and a 
generalization of structure-factor algebra. Atomic 
scattering factors may assume arbitrary complex 
values, so that this formalism applies to neutron as 
well as to X-ray diffraction methods. This unified 
procedure will later be extended by the construction 
of conditional distributions allowing phase extension, 
and of likelihood functions capable of detecting and 
characterizing all potential sources of phase informa- 
tion considered so far, thus completing the formula- 
tion of a full Bayesian inference scheme for crystal 
structure determination. 

Introduction 

The determination of crystal structures by X-ray or 
neutron diffraction, i.e. the transition from integrated 
intensity measurements to a refined 'atomic model, 
has often been likened, explicitly or implicitly, to a 
process of statistical inference. In particular, French 
(1978) has given a detailed overview of the Bayesian 
approach to the theory of inference, and a persua- 
sive account of its relevance to crystallographic 

methodology. His paper, however, is mostly of an 
expository nature and concerns itself with advocating 
the use of Bayesian concepts, rather than with actually 
developing the specific tools needed to bring about 
their implementation in crystallography. The main 
practical outcomes of his study are procedures for 
the treatment of negative-intensity observations 
(French & Wilson, 1978) and for profile fitting in 
diffractometer-data analysis (Oatley & French, 1982). 
The present work is concerned with the derivation of 
precisely those specific analytical and probabilistic 
results which are needed to turn Bayesian concepts 
into effective computational tools for crystal structure 
determination, i.e. for solving the phase problem. An 
introductory survey of these developments has been 
given elsewhere (Bricogne, 1987, 1988). 

Various instances besides the actual knowledge or 
legitimate assumption of certain phase values have 
been described as 'sources of phase information': (a) 
the atomicity of crystal structures and the statistical 
phase relations that ensue; (b) the availability of an 
isomorphous substitution series; (c) the presence of 
known molecular fragments; (d) the existence of 
solvent regions and/or  of non-crystallographic sym- 
metries; and (e) the availability of several crystal 
forms of the same molecule. Each such instance 
has given rise to a distinct phase-determination 
methodology in which the nature, the relative impor- 
tance and the degree of sophistication of the statistical 
methods employed vary greatly. Certain structure 
determination procedures, such as correlation 
methods based on Patterson functions, even seem at 
first not to involve any statistics at all; but assessing 
the level of significance of their results is a statistical 
problem. Clearly, a unified statistical treatment of all 
these methods would be most valuable, and the 
Bayesian approach to inference (e.g. Box & Tiao, 
1973) is a natural candidate for such a theory. 

The most fundamental prerequisite to the construc- 
tion of such a Bayesian theory is as follows. If we 
assume a given combination of instances (a)- (e)  to 
hold, this assumption being described by a suitable 
collection of parameters, then the assumption should 
be translated into a procedure for calculating the joint 
probability of  all the diffraction intensities which can 
be experimentally measured on the structure under 
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study. Once this is achieved, different assumptions 
may be ranked in the light of the observations accord- 
ing to their likelihood, i.e. to the probability they had 
assigned to the actual outcome of the measurements. 
Choices may then be made, on the basis of prior 
probabilities summarizing previous experience, that 
minimize the cost of possibly making wrong 
decisions. The overall process of crystal structure 
determination thus becomes a game in the sense of 
statistical decision theory (Blackwell & Girshick, 
1954; De Groot, 1970), to which the tree-directed 
multisolution strategy using a combination of entropy 
and likelihood as a heuristic criterion (Bricogne, 
1984, 1988) can be applied. 

This first paper presents a general procedure for 
carrying out the basic task of deriving joint probability 
distributions of structure factors capable of accom- 
modating all current used sources of phase informa- 
tion. Our starting point (§ 0) is a self-contained 
recapitulation of the procedure proposed in a pre- 
vious paper (Bricogne, 1984, hereafter referred to as 
MEFDM) for constructing the saddlepoint approxi- 
mation to the joint probability distribution (j.p.d.) of 
any prescribed collection of structure factors belong- 
ing to a crystal structure made of unit-weight point 
atoms distributed identically and independently with 
a non-uniform density. The first generalization (§ 1) 
extends this treatment to the case where all atoms 
remain identical but have an arbitrary complex scat- 
tering factor. The second generalization (§ 2) con- 
siders a heterogeneous structure made up of several 
species of atoms, each species having its own scatter- 
ing factor and its own non-uniform prior distribution; 
this affords a treatment not only of the chemical 
heterogeneity of most crystalline compounds, but also 
of solvent regions in macromolecular crystals. The 
third generalization (§ 3) considers not one structure, 
but a family of isomorphous heterogeneous struc- 
tures, where each atom contributes simultaneously to 
all structures of the family but may do so with different 
scattering factors; this model can now accommodate 
a statistical formulation of all substitution methods: 
isomorphous replacement (single or multiple), 
anomalous scattering (at one or several wavelengths) 
and solvent-contrast variation. The fourth generaliz- 
ation (§ 4) deals with cases where part of a structure, 
or a common part of all structures in an isomorphous 
family, consists of a known molecular fragment; it 
yields a statistical formulation of the molecular 
replacement method and of the process of completing 
a partial structure which has several advantages over 
current methodology. The fifth generalization (§ 5) 
allows for the possible existence of local non-crys- 
tallographic symmetry within the asymmetric unit of 
a crystal or of an isomorphous family of crystal struc- 
tures, whose effect is to alter profoundly the covari- 
ance structure of the j.p.d, and thus to create very 
strong phase relations. The sixth generalization (§ 6) 

further allows for the possible availability of several 
crystal forms of the same molecule, each built with 
a different lattice and a different space group, and 
possibly comprising an isomorphous family, with 
known fragments and non-crystallographic sym- 
metries; if the various crystal forms differ only by 
slight lattice deformations, a treatment of non- 
isomorphous heavy-atom derivatives is obtained. 
Remarkably, the formal structure of the j.p.d, remains 
the same throughout these successive generalizations. 
These developments are summarized in § 7. 

The outcome of this paper is thus a procedure for 
optimally combining, in the form of a universal 
expression for the j.p.d, of relevant structure factors, 
all currently used sources of phase information. Paper 
II will proceed to the local study of the dependence 
of this universal form for joint and conditional distri- 
butions on the initial assumptions, and to the con- 
struction of likelihood functions for testing these 
assumptions on the basis of various types of observa- 
tions. These will usually be single-crystal diffraction 
intensities, but may also be fibre or powder data, and 
the treatment will include the effect of measurement 
errors. Finally, paper III will illustrate this unified 
approach by applying it to a number of classical 
problems and comparing its results with those of the 
standard methods available in each case. 

O. Unit point-atom structures 

This preliminary section aims at giving a self- 
contained presentation of a new analytical approach 
- the saddlepoint method - proposed in MEFDM for 
approximating j.p.d.'s of structure factors when large 
moduli are present. For simplicity this approach is 
first formulated here for point atoms of unit weight, 
i.e. for the purely trigonometric part of atomic contri- 
butions to structure factors. This has the advantage 
of displaying the mathematical basis of the method 
without the complications introduced by atomic scat- 
tering factors, which are dealt with in § 1. The transi- 
tion to conditions distributions and to likelihood 
functions is then sketched in qualitative terms, to 
serve as a pointer to their later use in paper II and 
to illustrate the scope of each of the generalizations 
presented here. 

0.0. Definitions and conventions 

Let H be a set of unique non-origin reflexions h 
for a crystal with lattice ~ and space group G = 
{Sg[g~ G}, where 

Sg: X-~ Rgx-{- tg. 

The asymmetric unit D of this crystal may contain 
special positions x which are invariant under some 
of the Sg; for such points x, G,, will denote the 
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isotropy subgroup of x: 

G , , = { g ~  GIRgx+tg  =-x mod ~},  

and I G~I will denote the number of its elements. 
Let H contain n~ acentric and n~ centric reflexions. 

Structure factor values attached to all reflexions in H 
will comprise n = 2n~ + n~ real numbers. For h acen- 
tric, ah and /3h will be the real and imaginary parts 
of the complex structure factor; for h centric, Yh will 
be the real coordinate of the (possibly complex) struc- 
ture factor measured along a real axis rotated by one 
of the two angles 0h, 7r apart, to which the phase is 
restricted modulo 27r. These n real coordinates will 
be arranged (MEFDM, § 7.1.1) as a column vector 
containing the acentric then the centric data, i.e. in 
the order 

a~, 13,, a2,/32,. • •, a,o,/3,o, 3'1,72,. • •, "/,~. 

0.1. Vectors o f  trigonometric structure-factor 
expressions 

Let ~:(x) denote the vector of trigonometric struc- 
ture-factor expressions associated with x ~ D. These 
are defined as follows" 

Ogh(X) + i/3h(X) -- ='(h, x) 

Th(X) = exp (--/Oh)-- ~(h,  X) 

where 

for h acentric 
(0.1a) 

for h centric 
(O.lb) 

~(h,x)=lGxl-' ~ exp[27rih.(Sgx)], (0.2) 
g ~ G  

since each point in the orbit of x under the action of 
G is repeated [Gxl times. 

According to the convention of § 0.0, the coordin- 
ates of ~(x) in R" will be arranged in a column vector 
a s  

6 r _ l ( X )  ~- O~h(r)(X ) r = 1 , . . . ,  n. (0.3a) 

~2r(X) = ~h(r)(X) r =  1 , . . . ,  na (0.3b) 

~na+r(X) = ~h(r)(X) r =  na + 1 , . . . ,  n~ + n~. (0.3c) 

0.2. Distributions o f  random atoms and moment-  
generating funct ions  

Let position x in D now become a random vector 
with probability distribution m(x). Then ~(x) 
becomes itself a random vector in R", whose distribu- 
tion p(~) is the image of distribution m(x) through 
the mapping x ~ ( x )  described by (0.1), (0.2) and 
(0.3). The locus of ~(x) in R" is an algebraic manifold 
(the multidimensional analogue of a Lissajous curve), 
and hence p is a singular measure; nevertheless, the 
average with respect to p of any function /2 in R" 
may be calculated as an average with respect to m 

over D by the 'induction formula' 

p(~)O(~) d"~= ~ m(x)O[~(x)] d3x. (0.4) 
R n D 

In particular, one can calculate the moment gen- 
erating function (m.g.f.) M for distribution p as 

M ( t ) =  j" p(~)et '~d"~ 
R n 

= ~ m(x) e t't~(x) dax (0.5) 
D 

and hence calculate the moments /x (cumulants K) 
of p by differentiation of M (log M) at t = 0:  

ftrlr 2 ..... ~- I m(x)s~'(x) - ' '  s~,"(x) d 3 x  
D 

a q + " + r " M  I . . . . . .  (0.6) 
Ot~ ~ . . . Ot~ ~ t=o  

0 rl++r- (log M) ] 
Krlr 2 ..... = Otl "-~t . [.-07~ t=0 (0.7) 

The structure-factor algebra for group g (see Appen- 
dix) then allows one to express products of ~:'s as 
linear combinations of other s~'s, and hence to express 
all moments and cumulants of distribution p(~) as 
linear combinations of real and imaginary parts of 
Fourier coefficients of the prior distribution of atoms 
re(x) (MEFDM, § 7.1.1). This is the key element in 
the use of non-uniform distributions of atoms 
throughout this work. 

An important property of the cumulant-generating 
function log M is that it is strictly convex, i.e. that its 
Hessian matrix V2(log M) is everywhere positive 
definite, provided that the set of vectors 

{t~(x) I x ~ D, m(x) # 0} 

spans the whole of R". Partial loss of this property 
in later extension of the theory will require that certain 
regularization procedures be used to recover it in a 
subspace. 

0.3. Thejo in t  probability distribution o f  structure fac tors  

In the random atom model of an equal-atom struc- 
ture, N atoms are placed randomly, independently 
of each other, in the asymmetric unit D of the crystal 
with probability density re(x). For point atoms of 
unit weight, the vector F of structure-factor values 
for reflexions h ~ H may be written as 

N 

F= Y ~t,~ (0.8) 
I = 1  

where the N copies ~tll of random vector ~ are 
independent and have the same distribution p(~). 

The joint probability distribution ~(F)  is then the 
Nth convolution power of p: 

~(F)  = p*N(F) (0.9) 
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and hence is the Fourier transform of the Nth power 
of its characteristic function M(it),  which may be 
written [MEFDM, equation (5.11)] as 

~ ( F )  = (2,n-)-" ~ MN( i t )  e -'''v d"t (0.10a) 
R "  

=(2rr) -"  5 e x p { N [ l o g  M(it) 
R n 

- i t . (F /N) ] }  d"t. (0.10b) 

For low dimensionality n it is possible to carry out 
the Fourier transformation (0.10a) numerically, pro- 
vided M(it)  is sampled sufficiently finely that no 
aliasing results from taking its Nth power (Barakat, 
1974). This exact approach, which can also fully cope 
with atomic heterogeneity, was first used in the field 
of intensity statistics (Shmueli, Weiss, Kiefer & Wil- 
son, 1984; Shmueli, Weiss & Kiefer, 1985; Shmueli 
& Weiss, 1987), then in the study of the Y~l and Y~2 
relations in triclinic space groups (Shmueli & Weiss, 
1985, 1986). It could be extended to the construction 
of any j.p.d, in any space group by using the generic 
expression for the m.g.f, derived in MEFDM § 3.5.2. 
It is, however, limited to small values of n by the 
necessity to carry out n-dimensional FFT's on large 
arrays of sample values: in all other situations, some 
approximation method must be used. 

The asymptotic expansions of Gram-Charlier 
(Bertaut, 1955a, b) and Edgeworth (Klug, 1958) are 
obtained by expanding log M as a Taylor series near 
t = 0, then integrating termwise after a rearrangement. 
As pointed out in MEFDM (§ 2), these expansions 
have good convergence properties only if Fh lies in 
the vicinity of (Fh)= No%-'[m](h) for all he  H. All 
previous work on the j.p.d, of structure factors has 
Used for re(x) a uniform distribution, so that (F)= 0; 
as a result, the corresponding expansions are accurate 
only if all moduli ]Fh[ are small, in which case the 
j.p.d, contains little phase information. 

The recent work of Castleden (1987) and of Peschar 
& Schenk (1987) on the general formal structure of 
j.p.d.'s and on the computer-aided construction of 
the Edgeworth series still uses a uniform prior distri- 
bution of atoms, and thus still does not address the 
problem of 'recentring' this asymptotic expansion 
near a point F far from (F)= 0. The work on exact 
methods also uses uniform prior distributions of 
atoms, although in this case this does not, of course, 
cause convergence difficulties. Only exceptionally 
(Gramlich, 1984) has the problem of a proper treat- 
ment of non-uniform distributions of atoms in direct 
methods been examined. 

Since the major thrust of this work is the construc- 
tion of joint probability distributions of structure 
factors in a large variety of situations where the non- 
uniformity of prior distributions of atoms is an essen- 
tial feature, the present approach will use a different 
method of approximation in which non-uniformity 

is not only accommodated, but is used actively as a 
recentring device: the saddlepoint method. 

0.4. The saddlepoint approximation 

The convergence difficulties encountered with 
classical asymptotic expansions are easily under- 
stood: one is substituting a local approximation to 
log M, in the form of a Taylor series expansion valid 
near t = 0, into an integral (0.10); whereas integration 
is a global process which consults values of log M 
far from t = 0. 

It is possible, however, to let the point t where log 
M is expanded as a Taylor series depend on the 
particular value F* of F for which an accurate evalu- 
ation of ~(F)  is desired. This is the essence of the 
saddlepoint method (Fowler, 1936; Khinchin 1949; 
Daniels, 1954; MEFDM, § 5), which uses an analyti- 
cal continuation of M(t) from a function over I~" to 
a function over C" (Paley & Wiener, 1934; Schwartz, 
1966). With the substitution t = s - i - r ,  the C" version 
of Cauchy's theorem (H6rmander, 1973) gives rise to 
the identity 

~(F*) = (2rr)-" exp (-~'.F*) 

x 5 exp{N[log M('r+ is)- is.(F*/ N)]} d% 
R n 

(0.11) 

for all "r ~ [~". By a convexity argument, which depends 
crucially on the fact that the vectors ~(x) span the 
whole of [R" as x runs through D, there is a unique 
value of-r such that 

V(log M)I,=o_,, = F*/N. (0.12) 

At the saddlepoint t * - - 0 - i ' r ,  the modulus of the 
integrand in (0.11) is a maximum and its phase is 
stationary with respect to the integration variable s: 
as N tends to infinity, all contributions to the integral 
cancel because of rapid oscillation, except those com- 
ing from the immediate vicinity of t* where there is 
no oscillation. A Taylor expansion of log M N to 
second order with respect to s at t* then gives 

log MN(-r+ is) --~ log MN(-r) + is.F* 

--~[srv2(1og MN)S] (0.13) 

and substitution into (0.11) leads to 

~(F*) -~ exp [log M N (-r) - "r.F*] 

X(2rr)-" ~ exp{--½[srv2(1og MN)s]}d"s.  
R "  

(0.14) 

The last integral is elementary and gives the 'saddle- 
point approximation' 

~SP(F*) = eS~[det (2rrQ)] -1/2 (0.15) 

where 

5¢ = log MN(-r) - a'.F* (0.16) 
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and where 

Q = vE(log MN). (0.17) 

As shown previously (MEFDM, §5.4) this 
approximation amounts to using the exponentially 
modulated 'conjugate distribution' (Khinchin, 1949) 

p,(~j) = p(~) e~'~/M(a-) (0.18) 

instead of the original distribution p(/j)=Po(~) for 
the distribution of random vector 6. By (0.4), p~ is 
induced from the modified distribution of atoms 

q~(x) = q(x) e~'~°°/M(-t) 

with, by (0.5), 
M('t) = j" re(x) e "'e~x~ d3x, 

D 

(SP1) 

(SP2) 

and where a- is the unique solution of (0.12), which 
we may write 

V,(log M N) = F*. (SP3) 

Finally, the elements of the Hessian matrix ~r2(1og 
M) are just the trigonometric second-order cumulants 
of distribution p, and hence can be calculated via 
structure-factor algebra (§0.2) from the Fourier 
coefficients of q,(x). All the quantities involved in 
expression (0.15) for ~sa(F*) are therefore effectively 
computable from the initial data re(x) and F*. 

It was further shown in MEFDM, § 6, that the 
positive definiteness of ~r2(1og M), which follows 
from the positivity of m(x) and of q~(x) for all -r, is 
the source of all the determinantal inequalities 
(Toeplitz, 1911; Carathrodory, 1911) used in direct 
methods (Harker & Kasper, 1948; Karle & Haupt- 
man, 1950; Tsoucaris, 1970). 

0.5. Maximum-entropy distributions of atoms 

One of the main results of the previous paper 
(MEFDM, § 5.4) is that the modified distribution 
q~(x) in (SP1) is the unique distribution which has 
maximum entropy ~,,(q) (i.e. contains the least 
amount of added information) relative to m(x), where 

~ m ( q ) = - ~  q(x) log[q(x) /m(x)]  d3x, (0.19) 
D 

under the constraint that F* be the centroid vector 
of the corresponding conjugate distribution ~,(F). 
The coordinates a- of the saddlepoint are then the 
Lagrange multipliers k for these constraints. The tra- 
ditional notation of maximum-entropy (ME) theory 
(Jaynes, 1957, 1968) for this case (MEFDM, § 3) is 

qME(x)=[m(x)/Z(X)] e ~''~°'~ (ME1) 

Z(k) = ~ re(x) e x'~°') d3x (ME2) 
D 

Vx(log Z N) = F*, (ME3) 

so that Z is identical to the m.g.f.M. In what follows 

we will use a mixed notation, in which M(t) will 
denote the m.g.f, of distribution p(g), ~ being the 
vector of trigonometric structure-factor expressions for 
unit point atoms; while Z(u) will denote the m.g.f. 
of distribution P(X), X being the vector of actual 
structure-factor contributions after the atomic scatter- 
ing factor has been applied. 

Jaynes's ME theory also gives an estimate for 
~(17.), 

~ME(F*) = e~, (0.20) 

where 

S = l o g  Z N - k . F  *= Nrfm(q ME) (0.21) 

is the total entropy and is the counterpart to (0.16) 
under the equivalence just established. 

~ME is similar to ~sP, but lacks the denominator. 
The latter, which is the normalization factor of a 
multivariate Gaussian with covariance matrix Q, may 
easily be seen to arise through Szegr's (1920) theorem 
from the extra logarithmic term in Stirling's formula 

l og (n ! )~n  log n-n+½ log(2rrn) (0.22) 

(e.g. Lebedev, 1972) beyond the first two terms which 
serve to define entropy. It is thus clear that the saddle- 
point approximation (0.15) is superior to the estimate 
(0.20) provided by ME theory, since the effect of the 
extra normalization factor will have to be taken into 
account as soon as the ratio n~ N ceases to be negli- 
gible. By the same theorem of Szeg6 (Bricogne, 
1982b; Britten & Collins, 1982; Narayan & 
Nityananda, 1982), the logarithm of this normaliz- 
ation factor is related to the Burg entropy of qME. 
These matters will be developed further in paper II. 

The above relation between entropy maximization 
and the saddlepoint approximation is fundamental 
to the general approach which is about to be presen- 
ted. The ME criterion intervenes only in the construc- 
tion of qME(x) under constraint values F*, and the 
distribution qME(x) is merely a computational inter- 
mediate in obtaining the approximate j.p.d. ~SP(F*) 
and its associated conditional distributions and likeli- 
hood functions. 

0.6. Conditional distributions, likelihood functions 
and phase refinement 

Although this is the main topic of paper II, we will 
introduce here the basic ideas, terminology and nota- 
tion needed to indicate in general terms the purpose 
of the extensive generalizations of § 0.4 which are 
about to be carried out, and thus to establish in 
advance a logical link with the corresponding sections 
of paper II. 

Let H and K denote two disjoint subsets of unique 
non-origin reflexions, and let FH and FK denote the 
vectors of associated structure-factor values. The con- 
ditional probability distribution of FK, given that FH 
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has the value F'H, is defined as 

~ ( F r  IFH = F*) = ~ ( r * ,  F ~ ) / ~ ( F * ) .  (0.23) 

In MEFDM, § 4, it was shown that the ME distribu- 
tion of atoms qME(x) used to construct ~SP(F*) pro- 
vides a means of approximating this conditional dis- 
tribution by a multivariate Gaussian with centre F ME 
and covariance matrix QKK. Here, F ME is the vector 
of Fourier coefficients of qME for reflexions in K, 
which have been extrapolated from the data F* by 
the process of entropy maximization; while the 
covariance matrix QKK is constructed via structure- 
factor algebra from the spectrum of qME in the same 
way as matrix QHH = Q [(0.17)] was for the 'basis' 
reflexions in H. This approximate conditional distri- 
bution will be denoted ~Se(FKIF H = F*). It differs 
from the usual Wilson (1949) distribution, which 
would correspond to a uniform qME, in two respects: 

(1) it is centred around Fr  = F  ME, not F/¢ =0;  
(2) its covariance matrix is QKK, not a multiple 

of the identity matrix. 
Therefore, integration of ~SP(FKIF H = F*) with 
respect to the phases in FK will yield a conditional 
marginal distribution of moduli ~sP(IFKI I FH = F*) 
which will differ from the standard Wilson distribu- 
tion of moduli, the latter being actually 
~sP(IFKII FH = 0). In summary we may say that ME 
extrapolation acts as a 'transducer' converting 
hypotheses about the initial distribution of atoms 
re(x) and about phase values in F* into hypotheses 
about a change in the distribution of the moduli IFK[ 
(or intensities IFKI2). 

The first type of hypothesis cannot be tested directly 
from measured da.ta, but the second one can. For this 
purpose [assuming for the moment that re(x) is 
initially uniform] we define the likelihood of  the phase 
choices in F*H as the conditional marginal probability 
of  the observed moduli IrK I °bS, 

A (F* )  = ~sP(IFK I°bSl F .  = F*) .  (0.24) 

It follows from the fundamental work of Neyman & 
Pearson (1933a, b) that the most powerful statistical 
test for picking the 'best' set of phases for F* consists 
of examining the value of the likelihood ratio 
A(F*) /A(O)  as a function of these phases, which 
measures the extent to which the observed values of 
the yet unphased structure-factor moduli IFKI °bS have 
been made more probable by the assumption that 
FH = F* rather than FH = 0. Such tests may be re- 
garded as a generalization of standard tests based 
on intensity statistics, but they are potentially more 
powerful because likelihood involves joint intensity 
statistics rather than the usual marginal statistics. 

Furthermore, the a priori probabilities ~SP(F*) 
may be combined with the likelihoods A (F*) through 

Bayes's theorem to yield the a posteriori probability 

~pos,(F*) oc ,~sr'(F*) x A (F*) ,  (0.25) 

providing the basis for a full-scale Bayesian approach 
to phase refinement. Thus the most powerful criterion 
for measuring the 'goodness' of a set of phases is a 
linear combination of the Jaynes entropy ~, of the 
Burg entropy 3- = log det Q, and of the log-likelihood 
log A, with relative weights involving the dimensions 
of the vectors of observations and the number N of 
atoms; the value of N actually used should be the 
'effective N '  (MEFDM § 8.3), which may be deter- 
mined by maximizing the posterior probability (0.25) 
with respect to N. The simplest instance of this pro- 
cedure (MEFDM, § 4.2.2; Bricogne, 1988) yields as 
an approximation the quartet formula of Hauptman 
(1975), but has considerably greater scope and gener- 
ality. 

In the rest of this paper, the assumptions on the 
basis of which joint distributions of structure factors 
will be sought will incorporate many new ingredients 
(such as molecular boundaries, isomorphous substi- 
tutions, known fragments, hon-crystallographic sym- 
metries, multiple crystal forms) besides trial phase 
choices for basis reflexions. The procedure just out- 
lined for deriving likelihood functions will be sys- 
tematically developed in paper If, and will lead in 
paper III to likelihood ratio tests for the detection and 
characterization of these new elements, and for 
refining the initial trial phases under these extra 
assumptions. This task will be facilitated by the fact 
that, however complex these assumptions become, 
the j.p.d, of structure factors will always be obtained 
in the same functional form summarized in 
(0.15), (0.16) and (0.17). 

1. Homogeneous structures 

The simplest manifestation of the chemical identity 
of atoms is that the observable structure factors are 
sums not of the trigonometric contributions them- 
selves, but of their product by atomic scattering fac- 
tors. This section will extend the derivation of ~SP(F) 
for homogeneous (i.e. equal-atom) structures to the 
case of an arbitrary complex scattering factor. While 
being relatively straightforward, this first generaliz- 
ation already brings to light interesting phenomena 
concerning normalization and determinantal 
inequalities. 

1.1. Normal scatterers 

Let us consider a homogeneous structure in which 
each of the N atoms has a scattering factor f = f ( h )  
which may be an arbitrary real number, positive or 
negative. Let a set of unique non-origin reflexions H 
be chosen, and let the observable structure-factor 
values attached to them be arranged into a vector F 
of dimension n = 2ha + nc as in § 0.0. 
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Let X(x) be the random vector of contributions to 
F originating from an atom placed at x. Then 

X(x) = f~(x) (1.1) 

where ~(x) is defined by (0.3) and f is the (diagonal) 
matrix of scattering factors for the various reflexions 
h ~ H. The distribution P(X) of X has a m.g.f. Z given 
by 

Z ( u ) =  .[ m(x) e "'x<x) d3x. (1.2) 
D 

But u.X = u.(f~)= (fru).~, so that 

Z(u)  = M(t)  with t = fru,  (1.3) 

M being the m.g.f, of distribution p(~) defined in 
(0.5). The transposition operation in (1.3) may seem 
superfluous at this stage, since f is diagonal, but this 
expression has the advantage that it will remain valid 
in this form for general f later. The result (1.3) was 
obtained by Klug (1958), the rearrangement on page 
518 of his paper being equivalent to this transposition. 

Since there are N independent identical random 
atoms, the m.g.f, for the j.p.d. ~(F)  is 

~(u)  = ZN(u) (1.4) 

and the standard saddlepoint argument may be 
invoked since, as x runs through D, the various vectors 
X(x) span the whole of R n. Thus, recentring ~ near 
F* amounts to updating the prior distribution of 
atoms re(x) to 

qME(x)=[m(x) /Z(k)]  e x'rg°') (1.5) 

with 

and 

Z(Jk) = ~ re (x)  e x'l~(x) d3x (1.6) 
D 

Vx(log ~ )  = F*. (1.7) 

The saddlepoint approximation to ~(F*) is then 

~SP(F*) = e~e[det (2"rrQ)]-l/2, (1.8) 

where 

De = log ~ - k . F *  = Nff,,, (q ME) (1.9) 

is the total relative entropy, and Q is the Hessian 
matrix of log ~ at the saddlepoint 

Q = V2(log ~) .  (1.10) 

It may be noted that, if "r = fTk, then 

V~<(.) = fV.,(.) (1.11) 

V2 ( . )  = f v E ( . ) f r ,  (1.12) 

so that (1.10) may be written 

Q = fV2.,(log M)f  T, ( l .10a) 

showing that Q may be calculated from the knowledge 

of the trigonometric covariance matrix V2(log M)  
(§ 0.2 and Appendix) and of the scattering-factor 
matrix f. 

Furthermore, (1.7) may then be rewritten 

V.,(log M) = ( N f ) - ' F *  = U*, (1.7a) 

where U* is the vector of normalized structure factors. 
Similarly, 

9 0 = N(log M -  "r.U*) (1.9a) 

is the same entropy as would be calculated by con- 
structing qME from the U* data rather than the F* 
data. Finally, since 

d~F= [det (Nf)]  d"U 

det [V2~(log Z N ) ] -  (det f)2 det [V2.(log MN)] ,  

we may write 

~SP(F*) dnF = ~sr ' (u*) d"U, 

where the latter is given by (0.15). Thus we might 
have dealt with this case by first 'normalizing' F* to 
U*, then solving the problem for unit point atoms for 
the U* data by the methods of § 0. 

It may also be noted that, because the trigonometric 
covariance matrix V~,(log M)  is positive definite (see 
§ 0.2), it follows by (1.10) and (1.12) that Q has the 
same property even if f contains negative values. This 
implies that determinantal inequalities will exist 
among the structure factors in spite of the fact that 
the electron (or scattering-length) density may be 
negative. It is thus the positivity of the probability 
distribution of scatterers re(x), not of the electron 
density p(x), which is the basis for determinantal 
inequalities. 

1.2. Anomalous scatterers 

Let us now assume that each of the N equal atoms 
has a complex scattering f a c t o r f = f R +  ift, f R and f r 
being known functions of h, as can occur with X-rays 
or with neutrons. The vector F of symmetry-unique 
observable structure factors attached to reflexions 
h e l l  now has dimension 4na+nc,  and its com- 
ponents may be ordered by placing first, in an obvious 
notation, the real components (A~-, B~-, A~-, B~-) for 
acentric reflexions, followed by the real components 
Ca for the centric reflexions. 

Let X(x) be the random vector of contributions to 
F from an atom placed at random position x ~ D, and 
let its components a +, b +, a - ,  b-  and c be ordered 
as those of F. The relation giving X(x) in terms of 
~(x) is now 

a+(x)] 
b+(x) / = f '  

a-(x)i f~ 
b-(x)J h f '  

-] 
f '  Lfl(X)Jh 

__fR h 

(1.13a) 
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for all acentric reflexions, and 

Ch(X) = fR (h) 3'u(X) (1.13b) 

for the centric reflexions, where ah(X), /3h(X) and 
Tu(X) are defined in (0.1a, b). This relation may be 
written more compactly as 

X(x) = f~(x) (1.14) 

where f is the scattering-factor matrix built from the 
blocks defined in (1.13a, b). It is a rectangular (4ha + 
nc) x (2ha + nc) matrix, which converts the (2n~ + n¢) 
vector ~ into the (4n~ + n~) vector X; therefore, as x 
runs through D, the vectors X(x) only span a subspace 
of dimension n=2n~+n~  of the (4n,+n~)- 
dimensional space in which they are defined. This 
phenomenon requires that some caution be exercised 
prior to using the saddlepoint method since the global 
log-convexity of the m.g.f. ~, which is essential to 
guarantee the existence and uniqueness of the saddle- 
point, is now in jeopardy. Since this difficulty will 
recur later, we will go to some length in showing how 
to overcome it. 

We may decompose the total space as an 
orthogonal direct sum of the image space of f (the 
'allowed' subspace, of dimension n) and of its 
orthogonal complement (the 'forbidden' subspace, 
which is also the null subspace of f r  of dimension 
2na), denoting by Prll and Pr± the associated projec- 
tion operators. A generic vector X in the total space 
may be written 

X= PrlI(X)O Pr±(X ) = XII +X ±. (1.15) 

If one uses the generalized inverse f#=  (frf)-~fT of 
f [see, for instance, Graybill (1969), Chapter 6], these 
projectors may be 'diagonalized' as 

Prll (X) = Pr~[if#X] (1.16a) 

Prl(X) = Pr2[( l -  ff#)X], (1.16b) 

where 1 is the identity matrix in the total space, and 
Prl (Pr2) is a diagonal projector which projects an 
(n + 2ha) vector by taking its first n (last 2n~) coordin- 
ates. The integration volume form may then be written 

dn+2%X = dnXll d2%X±. (1.17) 

The fact that a vector X(x) defined by (1.14) lies in 
the image space of f may be written, in a basis adapted 
to this decomposition, 

xll(x) 
X(x)= or X±(x) = 0, (1.18) 

0 

so that the distribution P of X(x) is of the form 

P(X)= PII(Xll) ® 8(X.) (1.19) 

where the Dirac distribution 8(X1) [see Schwartz 
(1966) as a general reference] has the effect of concen- 

trating P in the allowed subspace. Using the dual 
decomposition u = ell + H l for the vector u of carrying 
variables, we may write the m.g.f. Z of P as a tensor 
product 

Z(u) = Zll(Ull) ® l(ui)  (1.20) 

where l(u±) is a function having identically the value 
1 in the forbidden subspace, and where 

ZLI(ulI) = J re(x) exp [uli.Xil(x)] d3x. (1.21) 
D 

Since the collection of all vectors Xil(x) as x runs 
through D now spans the whole of R', log Zll has 
recovered the strict convexity property which log Z 
had lost. 

The m.g.f. ~ for ~(F)  is then 

°~(u) = [Zll(Ull)] N ® l(ui), (1.22) 

and Fourier-transforming back will turn the factor 
l (ui)  into a factor 8(Fl).  Therefore, as expected, 
is concentrated in the same subspace as P, and hence 
may be written 

~(F) = ~H(F~)® ~(Fl) 

where 

~ll(Fll) = (27r)-" ~ exp {N[log Zil(iull ) 

(1.23) 

[]~" 

- iull.(FiJ N)]} d"ull. (1.24) 

The saddlepoint argument may now be invoked to 
a p p r o x i m a t e  ~ll at Fll. It suffices to complexify Ull into 
vi i -  i~'ll, then to choose for ~.11 the unique value such 
that 

V log [(ZII) N ] = FI~ , (1.25) 

thus causing the integrand to have both a maximum 
modulus and a stationary phase at u~. The rest of the 
calculation follows the same course as in § 1.1 and 
yields results of identical formal appearance, but two 
points of difference must be emphasized. 

(1) Equation (1.7) can only be solved if F* lies in 
the allowed subspace, i.e. by (1.16a) if 

(ff#)F* = F*, (1.26) 

in which case it is equivalent to (1.25); expressions 
(1.5) to (1.9) are then valid, but the vector h involved 
is such that k± = 0. 

(2) The matrix Q whose determinant intervenes in 
the expression (1.8) for ~sr, is the Hessian matrix of 
log [(ZII) N] with respect to the coordinates kll in the 
allowed subspace: 

Q = V2,,~,.(log ~rll). (1.27) 

It is positive definite, while V~( log  ~)  is only positive 
semi-definite. From a computatianal point of view, 
Q (and hence det Q) may be obtained by applying 
eigenvalue filtering to V~( log  ~)  so as to isolate its 
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"regular part'. We will therefore introduce the 
notation 

Q = reg V 2x(log Z) (1.28a) 

det Q = det [reg vE~(log Z)] ,  (1.28b) 

which will be useful later in denoting a general pre- 
scription to deal with degeneracies such as those 
encountered in this section. 

We may now examine these results from the view- 
point of normalization procedures. The equivalent of 
(1.3) is here 

Zil(Ull)=M(t) with t=fTu,  (1.29) 

while the vector Ult itself may be written Ull = (fr)#t.  
Thus we could have applied the saddlepoint argument 
to M rather than Z, and obtained the saddlepoint 
condition (1.25) in the form 

V~(log M) =f#(F~I / N) = ( Nf)#F* = U *, (1.30) 

where the vector U* of normalized structure factors, 
obtained by means of the generalized inverse (Nf)  #, 
automatically lies in the allowed subspace. Further- 
more, 

d"Fii = {det [(Nf)T( Nf)]}'/2 d"U, 

while 

det Q = d e t  { reg [fV~,(log MN)fT]}; 

hence the effects of the scattering factors on the 
normalization factor and on the volume integration 
form cancel, leaving 

~SP(F*) d"F = ~SP(u*) d~U. 

Thus again we might have dealt with this case by 
normalizing F* to U* and then proceeding as if the 
structure were made of unit point atoms. The nor- 
malization formula 

U* = (Nf)  # F* 

is, however, less obvious than previously: it is actually 
equivalent to a least-squares fit to the data F*, enforc- 
ing the known value fl/fg for the ratio of their 
Hermitian-antisymmetric to their Hermitian-sym- 
metric parts. In particular, this normalization cannot 
be performed on the moduli data alone, since it acts 
on the phase information as well. 

Finally, the positive definiteness of Q as given by 
(1.28a) points to the existence of determinantal 
inequalities among structure factors, even though the 
electron (or neutron scattering-length) density p(x) 
now has complex values, once more emphasizing the 
fact that these inequalities follow from the positivity 
of m(x), not of p(x). 

2. Heterogeneous structures 

Crystal structures usually contain several chemical 
types of atoms, with different numbers of electrons 
or different neutron scattering lengths. In small- 
molecule direct methods this heterogeneity is dealt 
with through the process of normalization. The pro- 
cedure used, however, assumes a uniform distribution 
of all atom types, which is often unsatisfactory and 
requires ad hoc amendments. 

Another, even more extreme, type of heterogeneity, 
which might be termed physical rather than chemical, 
is encountered with the existence of solvent channels 
in macromolecular crystals: ordinary 'sharp' atoms 
are found in the macromolecule itself, while the sol- 
vent regions are filled with 'fuzzy' atoms having a 
large thermal parameter, the prior estimates for the 
distributions of the two categories of atoms being 
strongly non-uniform and mutually non-overlapping. 

Thus a proper statistical model for heterogeneous 
structures should accommodate not only different 
types of atoms, but also different non-uniform spatial 
distributions for each atom type. It is the purpose of 
this section to develop such a model within the 
framework of the saddlepoint approximation. 

2.1. General theory 

Let us consider a heterogeneous structure made of 
c distinct species of atoms, containing Nj atoms of 
species j distributed identically and independently 
with prior distribution mj(x), for each j =  1 , . . . ,  c. 
Atoms of different species are also assumed to be 
statistically independent. The scattering factor for 
species j is a known function fj(h) of h, which may 
take arbitrary complex values. Finally, let a set H of 
na acentric and nc centric unique non-origin 
reflexions be chosen, with the same conventions as 
in §§ 0 and 1 for ordering into vectors the real com- 
ponents of structure-factor data attached to them. 

Let lj(x) denote the random vector of trigonometric 
structure-factor expressions for a random position 
x ~ D. For each species j, the prior distribution mj(x) 
induces a different distribution pj(~) for this vector, 
whose m.g.f. Mj is given by 

M j ( t ) -  ft, pj(~) e t'~ dn~ 

= ~ mj(x) e t'~(x) d3x. (2.1) 
D 

Let X/(x) now denote the random vector of contri- 
butions of an atom of species j placed at x c D to the 
observable structure-factor vector F for the whole 
structure. As in § 1, 

Xj(x) = fj~(x), (2.2) 

where fj is the scattering-factor matrix for atomic 
species j. The m.g.f. Zj for the distribution Pj of Xj is 

Zj(u)=Mj( t )  with t = f f u .  (2.3) 
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The initial assumptions on the heterogeneous com- 
position of the structure may be reflected by writing 

F= ~ Y~ X~', 1, (2.4) 
j=l lj=l 

where all the summands are statistically independent 
and each X~J 1 is distributed according to Pj. The 
global m.g.f. ~ of the joint distribution ~(F)  is 
therefore 

~(u)= ~ tZj(u)]~ = ~ [Mj(f fu)]~. (2.5) 
j = l  j=l 

At this stage, we encounter the same difficulty as 
in § 1.2, namely that, as shown by (2.3), each Zj(u) 
depends on u only through flu, so that log Zj has 
vanishing curvature in the orthogonal complement of 
the image subspace of fs- As the difference matrices 
fj may have different image subspaces in I~ 4"o÷"c, the 
curvature of the weighted sum log Lr will be positive 
in the vector sum of the various image subspaces, 
which may be directly obtained as the image subspace 
of the average scattering matrix f defined by 

Nf= ~ Njfj. (2.6) 
j = l  

We may therefore use (1.15) and (1.16a, b) with this 
matrix f to define a decomposition of the total space 
in such a way that VZ(log Y) be positive definite in 
the allowed subspace labelled [I, while the zero cur- 
vature occurs in the forbidden subspace labelled _1_. 
In contrast to the case of a single atom type, the 
dimension n of the allowed subspace may be any 
integer between 2na + nc and 4na + no depending on 
the degree of heterogeneity of the structure. 

Having performed this decomposition, we have, as 
in § 1.2, 

Y(u) = ,.~ll(ull) ® l(u±), (2.7) 

with 

~,(u,) = IZ[ [zj,(u,)]~,; (2.8) 
j = l  

hence, after Fourier inversion 

~(F)  = ~II(FII)® a(F±) (2.9) 

where, if we put ~s = Nj/N, 

~II(FII) = (27r)-" exp N ~'j log Z/IL(iuLI) 
j l 

R n 

-iUll.(Fll/N)]}d"U,l. (2,10) 

The saddlepoint argument may now be applied by 
letting N and all the/Vj tend to infinity while keeping 
the ratios ~'j constant: complexifying Ull to  Vii--i]kll 
shows that all contributions to ~ll(Ffl) will come from 

the immediate vicinity oful~ = 0 -  ikll , where kll is the 
unique point at which the saddlepoint condition 

V log [(Zll) N ] -- FI~ (2.11) 

holds. This will lead to the desired approximation of 
~>(F) at F =  F* if and only if F* lies in the allowed 
subspace, which is equivalent to the condition 

(ff#)F* = F*. (2.12) 

In that case, the desired approximation formula will 
involve updated distributions q ME for each atom type 3 
j defined by 

q~E(x)=[mj(x)/Zj(k)] e ~''f:(') (2.13) 

with 

Zj(k) = J mj(x) eXfJ ~(') d3(x) ,  (2.14) 
D 

where the vector k (which is also the vector of 
Lagrange multipliers for the entropy maximization 
problem) is common to all the atom types. This vector 
is of the form 

X=Xll+0±, (2.15) 
kll being defined by (2.11), and hence lies in the 
allowed dual subspace. 

The saddlepoint approximation to ~(F*) is then 

~SP(F*) = e~e[det (2rrQ)] -u2, (2.16) 

where 

,9 °=log  ~ - k . F *  ~ ME = N~ 5e,,,,(qj ) (2.17) 
j = l  

is the total relative entropy (the N-weighted sum of 
individual relative entropies), and where 

Q = r e g  [V2~,(log Lr)] (2.18a) 

=reg/~vj=l Nj[fjV~,(log Mj)ff]} (2.18b) 

is the regular part of the Hessian matrix of log ~ at 
the saddlepoint in the allowed subspace. 

It is instructive to re-examine these results from 
the viewpoint of normalization procedures. By virtue 
of (2.5) and (1.11), the saddlepoint condition (2.11) 
may be written in the equivalent form 

c 

Y~ NjfjV,(log Ms)= F*. (2.19) 
j = l  

If all the prior distributions mj(x) are the same [say 
re(x)], then all the m.g.f.'s Mj are the same (say M), 
and the saddlepoint condition may then be cast in 
the form 

V,(log M ) =  U*, (2.20) 
where 

( )" U* = ~ Njfj F* = (Nf)#F * (2.21) 
j = l  
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is the vector of unitary structure factors. Thus the 
normalization operation (2.21) does again re.duce the 
problem to the case of unit point atoms, but at the 
cost of having to impose throughout the condition 
that all atom types should be identically distributed. 
As is well known, this assumption is often inappropri- 
ate, and special corrections must be made which have 
been the subject of extensive investigations, using the 
basic methods developed by Foster & Hargreaves 
(1963), Srinivasan & Parthasarathy (1976), Shmueli 
(1979, 1982), Shumeli & Wilson (1981, 1983) to derive 
intensity statistics for heterogeneous structures. The 
approach just presented is much more radical: instead 
of attempting to overcome the problem of 
heterogeneity by a single normalization operation, it 
allows a different prior distribution for each type of 
scatterer, and updates it differently by (2.13) as phase 
information is being introduced to recentre ~ ;  this 
explains the term 'multichannel' in the title of this 
paper. Since all these distributions mj(x) and qME(x) 
may each range from complete uniformity to various 
degrees of peakiness, they can accommodate within 
a single scheme the myriads of specific situations 
(heavy atoms in general or special positions, etc.) 
which, in various combinations, have been studied 
in the literature. We may therefore conclude that 
normalization should be abandoned for heterogeneous 
structures: instead, the j.p.d, of raw (unnormalized) 
structure factors F should be calculated directly by 
the multichannel procedure just presented. The prob- 
lem of initially estimating the absolute scale factor 
of the data when non-uniform prior distributions of 
atoms are assumed will be dealt with by a maximum 
likelihood method in the sequel to this paper. 

Finally, the positive-definite character of matrix Q 
(2.18) signals once more that certain determinantal. 
inequalities continue to hold between structure fac- 
tors, even when the latter emanate from an arbitrary 
mixture of normal and anomalous scatterers. 

2.2. Effect of heavy atoms 

The difference between the present 'multichannel' 
approach on the one hand, and the use of a single 
channel with normalized data on the other, may be 
illustrated most simply by considering a structure in 
P1 made of two types of atoms with uniform prior 
distributions ml(x) = m2(x) = 1/V. 

Let the value of one structure factor Fh = IF~l e i'~h 
be specified. Then the method of MEFDM, § 3.4.2 
may be followed to give the single-channel result 

qME(x) ---- [ VI0(K)] -l exp [K cos (27rh.x- ~oh)], 

where K satisfies 

I,(K)I Io(K)=IFhlI(N,f, + N2f2)=lUhl; 

on the other hand, the two-channel calculation runs 

as follows: 

z ,  = t o ( A ,  ), z2 = Io(Aa ), ~ = z , ~ , z ~  '2, 

whence 

q~E(x) = [ VIo(f,h ) ] - - I  exp [f ,h cos (27rh.x- Ch)] 

q2ME(x) = [ VIo(f2h)]-I exp [f2h cos (27rh.x- ~oh)], 

where h satisfies 

Nlf~[ II(AA )/Io(f~ A )]+ N2f2[ I1 (f2A)/Io(faA )] 

= IF , , I .  

The solutions of the equations for K and A are sum- 
marized in Table 1, which shows that if f~ >>f2 then 
the updated distribution qME can be much sharper 
than qME because f intervenes multiplicatively in the 
exponent of q ME Indeed, introducing the 'titres' j • 

w 2 = N j ~ I ( N , A  + N2f2), 

we may rewrite the two-channel equation as 

w,EI , (AA) / Io (AA)]+  w2EI,(AA)/Io(AA)] = I Uhl, 

and Table 1 shows that, as ] Uh[ approaches or exceeds 
Wl, the ME updating will suddenly decide to attribute 
this major non-uniformity mostly to the heavy atom. 
This behaviour is easily rationalized in terms of 
entropy, since 'nailing down' one heavy atom costs 
less entropy than nailing down several light atoms to 
produce a feature of the same height. 

Clearly, the multichannel approach using unnor- 
malized data can lead to substantially different results 
from those of the single-channel approach using nor- 
malized data. Since the ME-updated distributions 
q(x) are different in the two approaches, they will 
lead to different approximations for conditional dis- 
tributions, and hence to different likelihood functions. 

The saddlepoint method of approximation was 
compared with the Edgeworth expansion by Weiss, 
Shmueli, Kiefer & Wilson (1985) with regard to the 
effectiveness of the two methods in allowing for 
extreme atomic heterogeneity in the derivation of 
intensity statistics. The saddlepoint method was 
found to be much superior. However, this was a single- 
channel approach, which would not yield optimal 
statistical tests if pursued further. 

Only the multichannel results will be quantitatively 
correct: if a single channel is used from normalized 
data, the ME condition tends to prevent the build up 
of high electron density at the heavy-atom sites, as if 
it were an improbable pile up of light atoms. Thus a 
ME reconstruction of a strongly heterogeneous struc- 
ture obtained by maximizing the entropy of the elec- 
tron density map, as was done by Gull, Livesey & 
Sivia (1987) is of questionable quantitative validity. 
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Table 1. Compared solutions of the single-channel and two-channel maximum-entropy equations 

The single-channel and two-channel  maximum-en t ropy  equat ions were solved by a Newton  method for a hypothet ical  he terogeneous  
structure (one a tom with scattering factor 80 and 160 atoms with scattering factor  6) for a range of  values of  IEhl. The fol lowing 
quantities are tabulated as a funct ion of  IEhl: 

(i) single-channel case: 
K, solution o f  the single-channel ME equation;  
A, dynamic  range, as a power  of  10, of  the ME-upda ted  qME; 
S, total entropy;  
I E2~ El, ME-ext rapola ted  contr ibut ion to E2h ; 
]EME l, ME-ext rapola ted  contr ibut ion to F_.3h ; 

(ii) two-channel  case: 
A, solut ion o f  the two-channel  ME equation;  
fl ; t ,  equivalent  of  K for channel  no. 1; 
A~, dynamic  range, as a power  of  10, of  the ME-upda ted  qME; 
f2x, equivalent  of  K for channel  no. 2; 
A2, dynamic  range, as a power  o f  10, of  the ME-upda ted  qME; 
S, total entropy;  
]E ME], ME-ex t rapo la ted  contr ibut ion to F~h ; 
I E ~  El, ME-ext rapola ted  contr ibut ion to E3h. 

The two approaches  give different results. In particular,  the dynamic  range of  the two channels is vastly different, which results in 
a decreased total en t ropy  and a stronger ext rapola t ion for the 'over tones '  2h and 3h. These will affect, respectively, the (a priori) 
probabil i ty and the (a posteriori) l ikelihood of  any assumption concerning the presence or the localization of  the heavy atom. 

Single-channel calculat ion 

IEhl K a S IEMEI IEME I 
0"500 0-147 0" 128 -0"54? 0"018 0-000 
1-000 0-297 0"258 -2.196 0"074 0.004 
1"500 0"452 0-393 -4.976 0" 168 0"013 
2"000 0"616 0"535 -8-936 0"303 0"031 
2"500 0.791 0.687 - 14' 151 0.482 0-063 
3"000 0"985 0"856 -20"735 0.711 0" 114 
3"500 1-206 1.408 -28.853 0"997 0" 195 
4"000 1-468 1"275 -38"753 1 "352 0"317 
4"500 1"799 1"562 -50"830 1 "796 0"506 
5"000 2"253 1 "957 -65 "769 2"362 0"807 

Two-channel  calculat ion 

IEhl A f,A a, f2A A 2 S lEVEl IEMEI 
0.500 0.011 0.843 0.732 0-063 0-055 -0.257 0.067 0.009 
1.000 0.025 1.980 1.720 0-149 0.129 -1.114 0.255 0.074 
1.500 0.046 3"679 3.196 0.276 0-240 -2.854 0.487 0.215 
2-000 0.072 5.789 5.029 0"434 0-377 -5.798 0.686 0-358 
2.500 0.102 8.139 7.069 0.610 0.530 - 10.139 0.879 0.473 
3.000 0" 134 10.732 9.322 0.805 0.699 - 16.022 1.097 0.575 
3.500 0.171 13.659 I 1-864 1.024 0.890 -23.623 1.358 0-681 
4.000 0.214 17.086 14.841 1.281 1.113 -33.199 1.678 0.810 
4.500 0.267 21.329 18.526 1.600 i "389 -45.149 2.077 0.987 
5.000 0-338 27.054 23.499 2.029 1.762 -60.163 2.587 1.252 

2.3. Effect of solvent regions in macromolecular crystals 

The problem of devising a normalization procedure 
capable of dealing with macromolecular crystals, in 
that it would allow for the existence of solvent regions, 
has proved particularly intractable. In view of the 
remark made at the end of § 2.1 this is not surprising, 
since the assumption that solvent atoms and 
macromolecule atoms have the same prior distribu- 
tion is manifestly absurd: it would amount to using 
a ' random soup' model in which the macromolecule 
is broken up and its atoms are uniformly mixed with 
those of the solvent, whereas in reality the two types 
of atoms are totally segregated. With the present 
multichannel approach, however, a satisfactory statis- 
tical model can be obtained quite straightforwardly 
which sheds light on the power of solvent-flattening 
methods in macromolecular crystallography. 

Let us assume that a macromolecule is contained 
within a subregion U of the asymmetric unit D, and 
that the complementary region D - U  contains sol- 
vent. Let A'u denote the indicator function of U, i.e. 
let A'u(x) be 1 for x in U and 0 otherwise, and let 

= ( 1 / U ) ~ - ' [ ~ u ]  (2.22) 

be its normalized inverse Fourier transform, also 
called the 'interference function'. Let a set H of 
reflexions be chosen as before. 

Let the macromolecule be specified as a 
heterogeneous structure according to § 2.1, and let 
the solvent region be filled with No atoms having 
scattering-factor matrix fo. These solvent atoms have 
a very high temperature factor (B-~ 80-200 ~2) so 
that fo(h) falls rapidly as the resolution increases, 
while the macromolecule atoms have normal tem- 
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perature factors (B -~ 8 - 2 0  A2). In the absence of any 
phase information, a sensible choice for the prior 
distributions of these atoms is 

m0(x) = ( D -  U)-I)(D_u(X) 
for the solvent atoms, 

and 

mj(x)= U-1Xu(X) 
for the macromolecule atoms, 

where XD-t, = 1-Xu,  the same notation being used 
to denote a region of space and its volume. 

The basic m.g.f.'s are 

Mo(t) = ( D  - U) -1 ~ Xo-u(x)  e t'g(x) d3x 
D 

Mj(t) = U -1 j" Xu(X) e t'~(x) d3x, j :  1 , . . . ,  c, 
D 

in terms of which we may write the global m.g.f, as 

Y(u)=[Mo(f ru) ]  No IZI [Mj(ffu)]~.  (2.23) 
j = l  

Degeneracies introduced by complex scattering- 
factor matrices can be dealt with as in equations (2.7) 
to (2.18). Further degeneracies may, however, arise 
if H contains a sizeable fraction of all reflexions to 
a given resolution, because of the 'geometric redun- 
dancy' between structure-factor components intro- 
duced by the molecular envelope U: as shown earlier 
(Crowther, 1967; Bricogne, 1974), the vectors 
{~(x)lxe U} only span a subspace (Ygi) of relative 
dimension U / D  of the whole structure-factor space, 
while the vectors {~(x)lxc D - U }  span the com- 
plementary subspace (~o) of relative dimension (D - 
U)/D, (~0) and ( ~ )  being the eigenspaces for eigen- 
values 0 and 1 respectively of Crowther's (1967) H 
matrix. As a result, the Hessian matrices V2(log Mj) 
and V2(log Mo) will have near-zero curvature in sub- 
spaces (~0) and (Y(~) respectively. The Hessian 
matrix whose strict positive definiteness is essential 
to the saddlepoint method is, by (2.18), 

Q = reg { NofoV2(log Mo)fo r 

+ ~ Nj[f~V2(log Mj)fr]}. (2.24) 
j = l  

Its two summands have complementary regular sub- 
spaces (~o) and ( ~ ) ,  so that Q is in principle non- 
singular. At high resolution, however, fo is vanishingly 
small so that the first summand virtually disappears, 
leaving Q almost singular in (Y g0). This can be dealt 
with through a further regularization of Q by means 
of eigenvalue filtering to remove the worst parts of 
(Y go); this procedure may be cast in the same form 
as that of § 1.2 using generalized inverses, since the 
H matrix, being a projector (Bricogne, 1974), is its 

own generalized inverse (Graybill, 1969). The re- 
centring data F* must then be accordingly projected 
into the allowed subspace (Y g l) prior to seeking to 
fulfil the saddlepoint condition (2.11). 

Proceeding to (2.13), we obtain the updated ME 
distributions for the various types of atoms as 

q~E(x) : Xo-u(X) eX'f°g(x)/[(D - U)Zj(k)] 

q~E(x) = Xu(X) e~%g(x)/[ UZj(M], j =  1 , . . . ,  c. 

Because the scattering-factor matrices intervene 
multiplicatively in the exponents, and because of the 
rapid fall-off offo(h) with increasing resolution, q~E 
will remain very smooth, and all the fine detail 
specified by F* will appear within the region U con- 
taining the macromolecule. This is mirrored by the 
fact that the covariance matrix Q permits large fluctu- 
ations in the subspace spanned by X(x) for x e U, but 
very little fluctuation in the complementary subspace: 
therefore the conditional distributions ~SP(F K IF,  = 
F*) will discourage the build up of further detail 
outside U (see MEFDM, § 4.2.1), and hence will 
provide a statistical technique for enforcing in 
advance solvent flatness during phase extension. This 
is clearly preferable to enforcing solvent flatness a 
posteriori by iteratively masking the electron density 
map by the envelope function gu(x), hoping to find 
a fixed point for that iterative procedure (Bricogne, 
1974; Schevitz, Podjarny, Zwick, Hughes & Sigler, 
1981; Wang, 1985; Leslie, 1987). 

Thus the special difficulties, due to geometric 
redundancies, encountered here in dealing with sol- 
vent regions have as a positive counterpart a very 
substantial reward: by structure-factor algebra (see 
Appendix) the covariances between contributions 
emanating from neighbouring reciprocal-lattice 
points can be a substantial fraction of unity, since 
they are obtained as sample values of the interference 
function cg near its origin peak. As the number N of 
atoms increases, the width and strength of this origin 
peak remains approximately constant in reciprocal- 
lattice units, because biological macromolecules 
remain globular as they get bigger, instead of becom- 
ing fractal objects. Therefore the large covariances 
due to solvent regions remain close to unity as N 
increases, which in classical direct methods would 
correspond to the existence of I EI values of order 
NU2! As was argued in MEFDM, § 8.3, it is mainly 
this circumstance which invalidates previous con- 
clusions that probabilistic methods should be expec- 
ted to be powerless on macromolecules: these strong 
nearest-neighbour couplings turn the set of unknown 
phases into an interacting system akin to an 
'inhomogeneous Ising model' or 'spin glass', whose 
tendency to exhibit critical behaviour will greatly 
assist the propagation of phase information. 

As a corollary to its ability to extrapolate structure 
factors in a manner dependent on the choice of U, 
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the above statistical model of solvent regions will 
yield likelihood functions sensitive to that choice. 
Likelihood-ratio tests will therefore become available 
to evaluate the plausibility of various choices for U, 
thus providing a quantitative version of the usual 
'packing considerations' and R-factor calculations, 
or a test for guiding the connectivity-tracing method 
of Bhat & Blow (1982) in choosing which regions to 
include in its molecular envelope. These tests will be 
much more stringent if a contrast-variation series is 
available (§ 3.3). 

3. Isomorphous families of heterogeneous structures 

The most common phase-determination procedures 
in macromolecular crystallography consist of 
attempting to obtain, from a given unknown structure, 
several sets of diffraction intensity data which differ 
in that the scattering power of certain subsets of atoms 
varies from one data set to another. The methods of 
multiple isomorphous replacement (MIR) (Green, 
Ingram & Perutz, 1954; Dickerson, Kendrew & 
Strandberg, 1961; Blundell & Johnson, 1976) and 
multi-wavelength anomalous scattering or MWAS 
(Phillips & Hodgson, 1980) vary the scattering power 
of localized substituents, while the contrast variation 
method (Bragg & Perutz, 1952) modifies that of the 
solvent. The crystal structures from which such data 
sets can be obtained will be said to constitute an 
' isomorphous family', the term isomorphous implying 
the preservation of a common crystal lattice and 
symmetry. The multichannel approach will now be 
extended to such families, by assigning a 'data chan- 
nel' to each of its members. 

3.1. General  theory 

Let us abstract the various situations mentioned 
above by considering simultaneously d intensity data 
sets originating from an isomorphous family of d 
heterogeneous structures made up of c distinct species 
of atoms. Each member k =  1 , . . . ,  d of the family 
consists of Nj atoms of species j, identically and 
independently distributed with prior distribution 
mj(x) (j = 1 , . . . ,  c) which is the same  for all k. Each 
atom of species j contributes to the vector Fk of 
observable structure-factor values for member k 
through a scattering-factor matrix fjk which may be 
different for different values of k; in particular, if 
scatterer type j is absent from structure k, then fjk = 0. 
These matrices, connecting the j th  'scatterer channel'  
to the kth 'data channel' ,  are the basis devices in this 
formalism for describing the way in which the mem- 
bers of an isomorphous family share the same scat- 
terers but with different scattering powers. We may 
take advantage of our ability to deal with negative 
scattering factors, and use equal mixtures of positive 
and negative 'clutter' atoms to model statistically the 

type of non-isomorphism caused by local distortions 
of the native structure. 

Let F denote the global vector of simultaneously 
observable structure-factor values attached to a set 
H of reflexions, across the entire family of d struc- 
tures. We write 

d 

F =  O Fk (3.1) 
k = l  

where G indicates a columnwise direct sum operation 
(i.e. the concatenation of column vectors). 

Let random vector ~(x) and the m.g.f.'s Mj be 
defined as in § 2.1, and let Xjk(x) denote the random 
vector of contributions of an atom of species j to the 
observable structure-factor vector Fk for member k 
of the family: 

Xjk(X)=fjk{(X), j = l , . . . , e ;  k = l , . . . , d .  (3.2) 

The contribution of that atom to the global vector F 
may then be written 

Xj(x) = fj~(x) (3.3) 

where 

and where 

d 

Xj(x) = 0 Xjk(x) (3.4) 
k = l  

d 

fj = O fjk, (3.5) 
k = l  

the global scattering matrix of type j, is the column- 
wise direct sum of the individual matrices fjk. The 
rank of these matrices cannot exceed its maximum 
possible value for one of the heterogeneous structures 
of the isomorphous family, and thus the vectors Xj(x) 
will lie in a subspace of bounded dimension whatever 
the size d of the family. 

With this extension of the notation, (3.3) is identical 
to (2.2) and the derivation follows formally the same 
course as for a single structure. The global m.g.f, is 

j = l  

= fjkuk (3.6) 
j = l  1 

where 

d 

U =  O Uk 
k = l  

is partitioned in the same way as F. 
Zero or near-zero eigenvalues in V2(log ~ )  due to 

the low rank of the scattering-factor matrices and /or  
to solvent regions can be removed by regularization, 
as explained in §§ 1.2 and 2.3 respectively, so that 
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the saddlepoint condition 

d 

V(log Lr)= F*= @ Fk* (3.7) 
k = l  

may be fulfilled in the allowed subspace, possibly 
after projecting the recentring data F*. This leads to 
updated ME distributions for each type of atom: 

q~E(x)=[mj(x)/Zj(X)] eX-5 ~(x) 

=[mj(x)/Zj(h)] exp [ ~ (3.8) 

with 

and to the saddlepoint approximation 

~SP(F*) = eS°[det (2~Q)] -'/2 (3.10) 

where 

6e = log :Z - k.F* ~ ME = Ni~mj ( q j )  (3.11) 
j = ,  

is the total relative entropy, and where 

Q = reg [vEx(log :Z)] (3.12a) 

= reg {j~ Nj[fjV2(log Mj)ff] }. (3.12b) 

Before regularization, this matrix may be partitioned 
into blocks as 

Q = I  Q ' '  

Qdi 

where each block 

. . .  Q,~[, . . . .$  

J " " " Q d d  

(3.12c) 

Qk,k,, = ~ Nj[fjk,V2(log Mj)f~,,] (3.12d) 
j = l  

may be calculated from the trigonometric covariance 
matrices V2(1og M/), given by the structure-factor 
algebra, and from the scattering-factor matrices f~k. 

3.2. Application to MIR and MWAS methods 
If H consists of a single reflexion, then F* contains 

all the (M)IR/(MW)AS data for that reflexion and 
~(F*) constrains all the structure-factor values to 
fulfil the geometric conditions of the Harker construc- 
tion, the 'lack of closure' for each derivative being 
attributed to the 'clutter' atoms for that derivative. 
This is simply the model of Blow & Crick (1959) in 
which the lack of isomorphism is modelled in real 
space by a uniform distribution of clutter. The present 
approach would allow one to accommodate non- 
uniform ME distributions of clutter, which would be 

useful as ME residual maps for diagnostic purposes. 
Most importantly, however, this statistical approach 
can deal with many reflexions at a time, and thus use 
statistical relations between phases to resolve the 
remaining ambiguities in the phase indications pro- 
duced by the Blow & Crick (1959) method. 

If H consists of three reflexions forming a triplet, 
the joint probability distribution ~SP(F*) will yield 
as an approximation when F* -~ 0 all the probabilistic 
formulae recently derived by Hauptman and others 
(Hauptman, 1982; Giacovazzo, 1983a; Cascarano & 
Giacovazzo, 1985; Giacovazzb, 1987; Klop, Krabben- 
dam & Kroon, 1987) and cast in the form of inference 
rules by Karle (1983, 1984, 1985, 1986), following 
earlier work by K.roon, Spek & Krabbendam (1977) 
and Heinerman, Krabbendam, Kroon & Spek (1978). 
These developments, however, suffer from certain 
limitations, which are overcome in the present multi- 
channel approach. 

(1) They use the Edgeworth series, and hence are 
inaccurate for large moduli; the present approach 
uses the saddlepoint method, which is exempt from 
this limitation. 

(2) They use uniform distributions of atoms, which 
will prevent a proper representation of the progressive 
localization of heavy atoms and of the effect of solvent 
in proteins; the present approach can deal with 
arbitrary non-uniform distributions of atoms, which 
can accommodate all these phenomena. 

(3) They produce small-base joint distributions, 
concerning individual or few phase invariants, which 
are unable (because N is large) to capture any statis- 
tical correlations between the three macromoleeular 
contributions to the triple of structure ~'actors. The 
sharp indications of mixed-phase invariants found by 
Fortier, Weeks & Hauptman (1984) follow from the 
fact that large isomorphous or anomalous differences 
imply near alignment in the three Harker construc- 
tions between heavy-atom and macromolecular struc- 
ture factors, thus causing the latter indirectly to obey 
phase relations similar to those obeyed by the former. 
This interpretation, from which Karle's rules follow 
easily, was arrived at by Fortier, Fraser & Moore 
(1986), Fraser (1987) and Fortier (1987) on the basis 
of extensive numerical evidence that sharp triplet 
phase indications are found only for a selected subset 
of instances where a single isomorphous derivative 
suffices to produce unimodal phase probability 
densities for the three members of the triplet. Thus 
these recent developments leave untouched the cen- 
tral problem of the (M)IR/(MW)AS method, namely 
the bimodality of most of its phase indications. This 
restriction was to be expected, since these ambiguities 
can only be resolved by means of a criterion for 
preferring certain combinations of macromolecular 
structure-factor values to others; small-base j.p.d.'s 
are unable to do this, because N is large. By contrast, 
the present multichannel approach uses. large-base 



532 A BAYESIAN STATISTICAL THEORY OF THE PHASE PROBLEM. I 

j.p.d.'s, which are capable of capturing strong statis- 
tical phase relations even for large structures 
(MEFDM, §7.3), and hence has potentially the 
power to resolve these ambiguities. 

(4) These approaches do not allow for the effects 
of lattice-preserving non-isomorphism, and do not 
provide for possible errors in the data; whereas here 
we may use a mixture of positive and negative 'clutter' 
atoms to model this type of non-isomorphism, while 
the experimental data will be consulted through likeli- 
hood functions which take measurement errors into 
account. 

(5) New formulae need to be derived for different 
invariants, different space groups, different choices 
of centric and acentric reflexions, and different 
assumptions regarding the nature of substituents. In 
this work, by contrast, a single uniform procedure 
will yield a 'large-base' j.p.d, through a single formula 
(3.10) for any basis set of reflexions H, in any space 
group, for any combination of (M)IR and (MW)AS. 

Other attempts have been made to couple iso- 
morphous replacement to entropy maximization 
(Wilkins & Stuart, 1986; Bryan & Banner, 1987) using 
the lack-of-closure residual of the Blow & Crick 
(1959) error model as a constraint function. Similar 
work was carried out by the present author in the 
course of the structure determination of an Fab- 
lysozyme complex (Amit, Mariuzza, Phillips & Pol- 
jak, 1986) but serious problems of non-isomorphism 
were encountered, which emphasized the need for 
the present reformulation of the entire probabilistic 
basis of substitution methods from first principles in 
terms of joint distributions. In paper II, likelihood 
functions will be built from these joint distributions 
and applied to the problems of locating heavy atoms 
and refining their parameters. 

Finally, it has become a common practice to com- 
bine (M)IR/(MW)AS phase information, encoded 
according to the method of Hendrickson & Lattman 
(1970), with other sources of phase information such 
as those given by the tangent formula (Hendrickson, 
Love & Karle, 1973), non-crystallographic symmetry 
(Bricogne, 1976) or solvent flatness (Wang, 1985). 
This encoding and combination of phase information 
is done independently for each reflexion, and hence 
cannot represent statistical correlations between 
phases in a natural way. By contrast, the present 
approach accommodates, without any loss, all the 
available sources of phase information, which are 
automatically combined into a single joint probability 
distribution. 

3.3. Application to the contrast-variation method 

In a macromolecular crystal, it is sometimes poss- 
ible to modify the scattering power of the solvent (e.g. 
by varying the D20/H20 ratio for neutrons, or by 
changing the nature or concentration of the salt for 

X-rays), thus causing intensity changes at low angle 
from which some structural information can be 
deduced. The method has met with several successes 
in the low-resolution study of several large biological 
assemblies (e.g. Bentley, Lewit-Bentley, Finch, Pod- 
jarny & Roth, 1984) but its use has not been extended 
to higher resolution, for need of an adequate treat- 
ment of the effects of density non-uniformities within 
the macromolecule. The most recent statistical treat- 
ment, due to Roth (1987), is based on Wilson's statis- 
tics, and hence does not produce any phase relations 
between the structure factors belonging to different 
reflexions. 

A full probabilistic treatment of the contrast-vari- 
ation method is immediately obtained by considering 
an isomorphous family of heterogeneous structures 
differing by the mean electron (or neutron scattering- 
length) density in the solvent region D - U .  This 
model does accommodate the phenomenon of con- 
trast matching, as is easily seen by extending the 
assumptions of § 2.3 to an isomorphous family. In 
the absence of any phase information (i.e. at ~.=0), 
the expectation value of F under ~(F) is given by 

V(log Y)x=o = Nofo~- ' [mo]+  ~ N j f j ~ - ' [ m j ]  
j = l  

where ~ - ~ [ m ]  denotes the vector of Fourier 
coefficients of function m for h~ H. But because 
XD- V = 1 -- Xv we have 

too(X) = 1 / ( D -  U ) - [  U / ( D -  U)]mj(x) 

for all j = 1 , . . . ,  c, 

and so, for h # 0, 

~ - 1 [  too] (h) = - [  U~ ( D - U ) ] ~ - -  i [ m,](h) 

for all j =  1 , . . . ,  c, 

so that 

(F)=[(j~= N f l j ) - [ U / ( D - U ) ] N o f o ] ( # ,  (3.13) 

where ~ is the columnwise direct sum of d copies of 
the vector of values of the interference function at 
points h ~ H of the reciprocal lattice. At low resolu- 
tion, 

NJjk(h) = pMU for all k = 1 , . . . ,  d, (3.14) 
j = l  

where p M is the mean electron density of the 
macromolecule, while 

Nofok(h) = Ok s for each k = 1 , . . . ,  d, (3.15) 

where pS is the mean solvent electron density for the 
kth contrast level. Relation (3.13) may therefore be 
written as 

(Fk) = U ( p M _ p s ) f ~ ,  k = l , . . . , d ,  (3.16) 
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which is the basic relation of the contrast-variation 
method. 

At higher resolution, the density non-uniformities 
within the macromolecule invalidate (3.14). It is then 
possible to use a series of contrast-variation measure- 
ments to determine the moduli of the protein and 
solvent structure factors and the absolute value of the 
angle between them (Roth, Lewit-Bentley & Bentley, 
1984); but no method so far exists to determine the 
actual absolute phases. 

By contrast, the saddlepoint approximation (3.10) 
to the joint probability distribution of structure fac- 
tors belonging to a contrast-variation series provides 
the necessary phase relations to initiate the phasing 
of a macromolecular structure at low resolution by 
means of contrast-variation measurements, without 
being limited to resolutions where the inside of 
the macromolecule is essentially featureless. Any 
anomalous-scattering effect from contrast agents such 
as Cs, Se or lanthanide ions can be handled by this 
formalism, and will further help define the molecular 
envelope U. If non-uniform adsorption of some ions 
occurs at the same time, this can be modelled statisti- 
cally by representing the solvent itself as a 
heterogeneous mixture of several species of atoms, 
each species being assigned a distinct channel. 

4. Known structural fragments 

It is often the case in the course of a crystal structure 
determination that the location and orientation of 
some atoms or molecular fragments become known, 
and that this knowledge is then to be 'recycled' to 
assist the overall phase determination, or that one 
wishes to detect or confirm their presence by means 
of a statistical test. This type of situation arises in the 
'molecular replacement' method (Rossmann, 1972), 
and also when one is seeking to locate substituents 
in an isomorphous family of structures. In all cases 
it is desirable to describe quantitatively the effect of 
the presence of such fragments on the joint distribu- 
tion of all observable structure factors. This will be 
done here by creating a 'deterministic channel' to 
accommodate the fragment, alongside the channels 
already assigned to the different types of random 
atoms. 

4.1. General theory 

Let us consider an isomorphous family of structures 
defined in § 3. Let (H0) be the hypothesis that these 
structures consist of N: atoms of type j (j = 1 , . . . ,  c), 
distributed according to prior mj(x). Then the m.g.f. 
for ~(F)  is, as in (3.6), 

: ~ (u )= l s [ [Z : (u ) ]~  with Z j (u)=Mj( f ]u) ,  (4.1) 
j = l  

where M: is defined in (2.1). 

Now let (H~) be the hypothesis that the structures 
contain a fragment consisting of nj atoms of type j 
( j - - 1 , . . . ,  c) in a fixed (known or parametrized) 
position or orientation. Then the j.p.d. ~ ' (F)  will 
differ from ~(F)  in two respects: 

(1) the known fragment contributes a vector 

d 
F calc= (~ rkl~'CalC 

k = l  

to F which is no longer random but 'deterministic', 
so that it contributes a factor exp [u.F calc] to the m.g.f. 
Lr' of ~ ' ;  

(2) the random part of the model is itself modified: 
only Nj - nj atoms of each species j remain randomly 
distributed, and their prior distribution may no longer 
be mj(x) but becomes mj(x) because the 'determinis- 
tic' atoms in the fragment will exclude the random 
atoms from the region they occupy. 

Thus the m.g.f. Lr' of ~ '  under hypothesis (H~) is 

~ ' (u)  = exp [u.FCalc] I~ I [Z~(u)] ~- 'b (4.2a) 
j = !  

with 

where 

Z S ( u )  = , T  Mj(fj u) (4.2b) 

M~(t) = ~ m~(x) e ''~(') d3x (4.2c) 
D 

is the m.g.f, corresponding to the exclusion-modified 
prior distribution m~(x) for each j = 1 , . . . ,  c. 

The difference between ~ and ~ '  may be illustrated 
as follows. Let the known fragment exclude random 
atoms from a region U of the asymmetric unit. Then, 
in the absence of phase information (i.e. at h = 0 ) ,  
the difference between the vectors of first moments 
(F) and (F)' under the two hypotheses is 

(F) ' - (F)  = V log ( ~ ' / ~ )  

= F  ca'c- ~ nj f j~ - l [mj -m~] ,  (4.3) 
j = l  

while the two covariance matrices differ by 

Q ' -  Q = V 2 log (~ ' /~r)  

= -  ~ n j f jV210g(MJMj ) f f  . (4.4) 
j = l  

In (4.3) the subtrahend is the expectation value of 
the contribution of the random atoms displaced by 
the fragment, which will be proportional to the vector 
f~ of values of the interference function (see §§ 2.3 
and 3.3) corresponding to the region U occupied by 
the fragment; while in (4.4) it is the contribution to 
the covariance matrix emanating from those same 
displaced random atoms, which by structure-factor 
algebra (see § 2.3) will also involve sample values of 
the interference function cg. Therefore, the presence 
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of the fragment biases the first moments in the sub- 
space spanned by the Xj(x) for x~ U, and reduces 
the dispersion of ~(F)  in that subspace. These two 
effects will result in a sharper joint distribution, offset 
from its original centre. 

Upon recentring around a given vector F*, the 
difference between ~ and ~ '  will be accentuated by 
a different ME updating of the prior distribution of 
atoms. Under (H0), mr(x) becomes 

q~E(x) = E mj(x)/ Zj(X ) ] e~"', ~(') 

with h. determined by 

V(log ~ ) =  ~ Njf,~r,(log Mj)= F*; 
j=! 

while under (Hi), m~(x) becomes 

q;ME(x) = [ m~(x)/Z;(X')] eX"r, ~<') 

with k' determined by 

V(log ~')=FCalc-t - ~ (Nj-nj)fjV(log M~)=F*. 
j=l 

The covariance matrices Q and Q' will also be 
updated differently, and finally the total entropies 
5e= logLr -k .F*  and 9 ° ' = l o g L r ' - k ' . F *  will be 
different. 

4.2. Scope of  the statistical model 

As has just been shown the presence (known, or 
assumed as a hypothesis to be tested) of a molecular 
fragment will lead to sharper estimates of both joint 
and conditional distributions of structure factors, 
because the random component of the structure has 
had some of its atoms removed and placed into a 
'deterministic' fluctuation-free component. It is worth 
noting that this extra phase information will be 
automatically combined, in the saddlepoint estimates 

and ~ ' ,  with any other phase information which 
could be extracted by the MIR, MWAS or contrast- 
variation (CV) methods from the available data. 

Likelihood functions built from these conditional 
distributions will make it possible to test (H,~ against 
(Ho) on the basis ofthe observed moduli IFK I °bS. Since 
the description of the fragment considered in (H~) 
may contain parameters describing (say) its position, 
orientation and occupancy, testing (H~) against (Ho) 
will provide a way of estimating these parameters. 
For instance, it will be possible to perform rotation 
and translation searches for fragments by maximum- 
likelihood methods rather than by Patterson super- 
position; or to assess the statistical significance of 
certain bound water molecules at the final stages of 
a macromolecular structure refinement by likelihood 

criteria rather than by tests involving R factors. The 
advantage of these new approaches is that, as shown 
by Neyman & Pearson (1933a, b), likelihood criteria 
are more powerful than any others. This task will be 
pursued in paper II. 

4.3. Comparison with previous methods 

Numerous methods exist for recycling reliably 
identified molecular fragments into the structure 
determination process, and this comparison will be 
limited to those connected with direct methods. 

The first study of the statistical effects of a known 
fragment (or 'heavy atom') on the probability distri- 
bution of structure factors is that of Sim (1959). His 
treatment, however, uses Wilson statistics for each 
reflexion, and so neglects the joint distribution prob- 
lem altogether. 

Beurskens has used the presence of a known frag- 
ment to recondition the triplet phase relations holding 
between the contributions from the rest of the struc- 
ture to produce the highly successful DIRDIF pro- 
gram (Van den Hark, Prick & Beurskens, 1976; Prick, 
Beurskens & Gould, 1978, 1983). This procedure has 
been cast in the language of joint distributions by 
Giacovazzo (1983b) and Camalli, Giacovazzo & 
Spagna (1985). Although there is some controversy 
as to the precise relation between them [see Beurskens 
(1987) and Camalli, Giacovazzo & Spagna (1987)], 
these two treatments both suffer from the usual limita- 
tions of the traditional approach to direct methods, 
mentioned in § 3.2. In this instance their most serious 
drawback is their inability to deal with the non- 
uniform distribution of the atoms making up the rest 
of the structure, which contains a great deal of phas- 
ing power (see § 2.3). Some attempts have previously 
been made by Wilson (1964), Nigam (1972) and 
Nigam & Wilson (1980) to take into account exclusion 
effects due to certain symmetry elements, and by 
Pradhan, Ghosh & Nigam (1985) to study those due 
to heavy atoms in special 
investigations have been 
statistics rather than with 
did not consider exclusion 
ments. 

positions. However, these 
concerned with intensity 
phase relations, and they 
effects due to known frag- 

Recently Marvin, Bryan & Nave (1987) have sug- 
gested that the presence of a fragment should be 
reflected by a modification of the prior distribution 
of the atoms (which are all randomly distributed) by 
means of an 'imprint' of the fragment. The analysis 
(4.3) and (4.4) shows that this is correct for first-order 
moments, but not for second-order moments: it fails 
to take into account the fact that the fragment contri- 
bution is deterministic, but instead treats it as a modu- 
lation of the random component of the structure. This 
leads to overestimation of the dispersion of condi- 
tional distributions, and hence would lead to quanti- 
tatively incorrect likelihood functions. 
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5. Non-crystallographic symmetries 
The exploitation of non-crystallographic symmetries 
(Rossmann & Blow, 1963) by real-space symmetry 
averaging (Bricogne, 1974, 1976) to assist phase deter- 
mination has been a substantial advance in 
macromolecular crystallography. It has been used to 
solve the structures of a large number of proteins [see 
Wilson, Skehel & Wiley (1981) for a particularly 
difficult case], and made it possible ten years ago to 
tackle virus structures (Bloomer, Champness, 
Bricogne, Staden & Klug, 1978; Harrison, Olson, 
Schutt, Winkler & Bricogne, 1978). Although the 
method has also succeeded in providing some degree 
of phase extension in situations of high symmetry 
(Nordman, 1980; Gaykema, Volbeda & Hol, 1985; 
Hogle, Chow & Filman, 1985; Arnold, Vriend, Luo, 
Griffith, Kamer, Erickson, Johnson & Rossmann, 
1987), this process is slow and unstable, and does not 
allow an ab initio phase determination. 

Here we will incorporate the real-space treatment 
of non-crystallographic symmetries given earlier 
(Bricogne, 1974) into the statistical framework of the 
ME method, in order to couple the phase-improve- 
ment capabilities of the former to the powerful phase- 
extrapolation properties of the latter. 

5.1. General theory 

Let us assume that r copies of a molecule ( r >  1) 
are present in the asymmetric unit of a crystal. Let U 
be the bounded (non-periodic) region occupied by 
one such molecule in some reference frame and let 

be the associated interference function. Let the r 
molecules in D be related to the reference molecule 
by a set F of transformations 

x--> Tpx = Cpx+dp ,  p-- 1 , . . . ,  r, (5.1) 

under which U becomes Up =TpU; the various Up 
for different values of p are disjoint, except perhaps 
for common boundary points. If F is a group, then 
a point x may have a non-trivial isotropy subgroup 
Fx, with Irxl elements. 

The joint distribution ~(F) of structure factors is 
profoundly altered by these assumptions: the atoms 
in the different regions Up, which would otherwise 
be statistically independent, are now totally corre- 
lated. The random-atom model therefore consists of 
placing atoms randomly in U accordingly to some 
prior distribution re(x) which vanishes outside U, an 
atom placed at random position x now giving rise to 
a random vector ~C(x) of trigonometric structure- 
factor contributions whose expression involves an 
expansion by the non-crystallographic (as well as by 
the crystallographic) symmetry operations. 

The basic definitions (0.1) and (0.2) are thus 
replaced by 

a~(x)  + i/3~C(x) : ~n~(h, x) (5.2a) 

for h acentric and 

y~(x) = exp ( -  i0h)_~n~(h, x) (5.2b) 

for h centric, where 

--~C(h,x)=]Fx[ -~ ~. --=(h, Tpx), (5.3) 
p=l  

the function ~(h,  x) being defined by (0.2). Conven- 
tions (0.3) regarding the arrangement of the coordin- 
ates into the column vector ~nC(x) are retained. We 
may then write 

~nc(x)=]Fx]-~ ~ ~(Tpx), (5.4) 
p=l  

and the m.g.f, for the distribution of this random 
vector is 

Mnc(t) = ~ m(x) exp [t.~nC(x)] d3x. (5.5) 
D 

The covariance structure of this distribution is 
much richer than that derived from ordinary m.g.f.'s 
(0.5). Indeed, the off-diagonal elements of its covari- 
ance matrix V 2 log (M he) are mixed second-order 
moments 

r io  FIC (~h (x)~:_h,(x)); 
by generalized structure-factor algebra (see Appen- 
dix), these contain contributions of the form 

~[ (RgCp) rh- (Rg,Cp,) rh'], 

p, p ' =  l, . . . , r; g , g ' ~ G ,  

which sample the interference function ~q at non- 
integral points of the reciprocal lattice. Whenever h 
and h' are such that their orbits under the combination 
of local and global symmetries contain a pair of points 
closer than the spacing between integral lattice points, 
this contribution will be close to unity, thus inducing 
very strong correlations between the corresponding 
structure factors. The counterpart of these strong 
correlations is that the covariance matrix is singular, 
having a regular subspace of relative dimension U~ D 
as explained in § 2.3. These algebraic phenomena are 
in accord with the intuitive idea that symmetry 
amounts to total correlation, and reduces the number 
of degrees of freedom. 

With these new definitions, the formal structure of 
all previous developments can be retained (including 
the introduction of multiple scatterer channels j = 
1 , . . . , c ,  multiple data channels k = l , . . . , d ,  and 
fragments), provided one uses m.g.f.'s like (5.5) for 
atoms obeying the non-crystallographic symmetry, 
and ordinary m.g.f.'s like (2.1) for other atoms. The 
latter category comprises solvent atoms, but may also 
include a mixture of positive and negative 'clutter' 
atoms within the regions Up to represent possible 
deviations from exact non-crystallographic sym- 
metry. 
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For instance, the joint distribution ~(F) for an 
isomorphous family of structures, with r identical 
molecules in its asymmetric unit, each containing Nj 
atoms of species j distributed as mj(x), and with No 
atoms of solvent outside these subunits, will have a 
m.g.f, whose form is easily adapted from (2.23) to 
yield 

~(u) = [Mo(foru)] No ~ [MTC(ffu)] u,. (5.6) 
j = l  

Because of the singularity of the trigonometric covari- 
ance matrices V 2 log (MTC), a careful regularization 
will have to be applied by selecting (as in § 2.3) the 
subspace allowed by the geometricredundancy of 
the situation, which is again the image space of 
Crowther's H matrix or equivalently of the real-space 
averaging operator (Bricogne, 1974). After projecting 
the recentring data F* onto this allowed subspace, 
the saddlepoint condition 

V (log Y ) -  N0foV (log Mo) 

+ Y. NjfjV(log M7 c) = F* (5.7) 
j = !  

can be fulfilled for a unique k belonging to that 
subspace, leading to the updated ME distributions 

qoME(x)=[mO(X)/Zo(k)]exp[k.fo~(X)] (5.8) 

q~'lE(x)=[rnj(x)/ZTC(k)]exp[k.fj~n¢(x)]. (5.9) 

Since the qME are built from symmetrized expressions 
~n~(x), they automatically obey the local symmetry F. 

The saddlepoint approximation ~SP(F*) has the 
same formal expression (3.10)-(3.11) as for an 
isomorphous family, except that the covariance 
matrix Q involves the Hessians of symmetrized 

nc m.g.f.'s Mj for the macromolecule atoms: 

Q = reg { N0fo V2 (log Mo)fo r 

+ ~ Nj[LV 2 (log MTC)ff]}. (5.10) 
j = l  

It is a straightforward exercise in notation to extend 
this treatment to the case where there are several types 
of molecules, each with its own local symmetry, in 
the asymmetric unit of the crystal. 

5.2. Scope of  the statistical theory of non- 
crystallographic symmetry 

The above treatment of the impact of local sym- 
metries on the phase-determination process is a 
powerful extension of the existing theory. Indeed, the 
latter only specifies that any vector of structure factors 
F should obey the condition F = HF (Crowther, 1967), 
or equivalently that p = B p  [i.e. that the electron 

density p should be invariant by real-space averaging 
and solvent flattening (Bricogne, 1974)], but no fur- 
ther indications are given as to where in the allowed 
eigenspace of H or B the actual solution is more likely 
to lie. By contrast, the saddlepoint approximation 
~sP to the joint distributions of structure factors was 
designed to provide these very indications: it can 
attribute different probabilities to two vectors F* hav- 
ing the same moduli and both lying in the allowed 
subspace (2~). 

The current methodology (Bricogne, 1976) uses a 
phase combination procedure based on Sim's formula 
to merge the phase information generated by real- 
space averaging with initial MIR information, thus 
treating the averaged solvent-flattened map as the 
map of a 'known fragment'. As pointed out in § 4.3, 
this uses Wilson statistics for each reflexion, thus 
ignoring all phase correlations across reflexions. By 
contrast, the present approach directly leads to a joint 
distribution ~SP(F) where F contains data for a whole 
isomorphous family; therefore ~sP automatically 
combines all phase information available from 
isomorphous derivatives, solvent flatness and local 
symmetry into a joint distribution which also rep- 
resents faithfully the probabilistic relations between 
different phases. 

As far as phase extension is concerned, the ME 
updating formulae (5.8) and (5.9) show that the ME- 
extrapolated values F ME of any set K of non-basis 
reflexions will obey the local symmetry and solvent- 
flatness constraints exactly, while the structure (5.10) 
of the covariance matrix Q shows that the build up 
of further detail by the terms in Fk will be encouraged 
if it falls within the molecular envelopes Up and obeys 
the correct local symmetry, but discouraged other- 
wise. Conditional distributions ~SP(F~ [FH = F*) will 
therefore have great power of phase extension under 
non-crystallographic symmetry constraints, enforcing 
the latter in advance of rather than after the fact as 
in the iterative procedures used by Nordman (1980), 
Gaykema et al. (1985) and Arnold et al. (1987). As a 
result, likelihood functions derived from these condi- 
tional distributions will afford stringent tests of the 
validity of the ingredients of the statistical model, 
such as its geometry F or the initial phase assumptions 
F*. These tests may be regarded as hybrids between 
the use of Patterson superposition methods, such as 
the rotation function of Rossmann & Blow (1962), 
and that of intensity statistics in the 'hypercentric' 
case (Lipson & Woolfson, 1952; Rogers & Wilson, 
1953; Wilson, 1952, 1987). Likelihood optimization 
with respect to parameters describing the geometry 
F, the choice of the region U, of local symmetries 
will yield new rotation/translation search procedures 
and statistical tests for the detection and identification 
of non-crystallographic symmetry; while its optimiz- 
ation with respect to the phases in F* will provide a 
method of phase refinement once the geometry has 
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been characterized, which may make it possible to 
solve structures having non-crystallographic sym- 
metry ab initio. These developments will be presented 
in paper II. 

5.3. A remark on the statistical interpolation o f  
structure factors 

In their first investigation of non-crystallographic 
symmetry and solvent flatness, Rossmann & Blow 
(1963) referred to a short paper by Sayre (1952) which 
led to the attribution of the phase information latent 
in such situations to the possibility of somehow inter- 
polating structure factors from integral to non-integral 
points of the reciprocal lattice. This interpretation 
was made plain when it was shown (Bricogne, 1974) 
that Crowther's H matrix, in terms of which these 
phase relations could be cast, was indeed closely 
related to Shannon's (1949) interpolation operator. 
From a practical point of view, it turned out to be 
computationally more efficient to operate in direct 
space by density masking and averaging (Bricogne, 
1974, 1976, 1982a), but the role played by structure- 
factor interpolation retains its theoretical importance. 

The statistical model presented above does incor- 
porate this interpolation phenomenon, albeit in the 
less-familiar form of a probabilistic interpolation 
whose result is not a set of numbers but a joint 
probability distribution for these numbers (Wiener, 
1949). In the usual formalism, interpolation in struc- 
ture-factor space is a kind of 'dispersion relation' 
which reflects the localization within a bounded (i.e. 
non-periodic) envelope U of all the unique densities 
from which the crystal is built; given the complete 
set of structure factors F* ,  where H is now the 
complete set of unique integral points of the 
reciprocal lattice, Shannon's interpolation formula 
allows one to calculate any set FK of values of the 
molecular transform at non-integral points. In the 
present formalism, knowledge of the molecular 
envelope U allows one to compute, by generalized 
structure-factor algebra, all the moments necessary 
for the calculation of the joint distribution 
~SP(FH, FK), even if F r  refers to non-integral Miller 
indices; the result of the probabilistic interpolation 
from F*H to FK is then embodied in the conditional 
distribution ~SP(FrIF H = F*)  which constitutes the 
result of the probabilistic interpolation in question. 
As the amount of data in F*H increases, this condi- 
tional distribution becomes very sharp, its limiting 
form being a (deterministic) Shannon interpolation. 

It is remarkably fortunate that the same device 
which allows one to obtain better approximations of 
joint distributions (namely the use of ME non- 
uniform prior distributions of atoms and of the 
saddlepoint method) should also shed light on the 
origin of non-crystallographic symmetry phase rela- 
tions, which are of an exact rather than probabilistic 
nature. 

6. Multiple crystal forms 

The rationalization of the phasing power of geometric 
redundancies in terms of molecular-transform inter- 
polation makes it obvious that the availability of 
several crystal forms of a given molecule is essentially 
the same phenomenon as the presence of non-crys- 
tallographic symmetry in one crystal form. The rela- 
tion between phases thus implied was examined by 
Main & Rossmann (1966), then cast in matrix form 
by Crowther (1969). A real-space presentation of the 
general situation of u crystal forms, each possibly 
having its own non-crystallographic symmetry and /or  
solvent boundary constraints, was given in an earlier 
paper (Bricogne, 1974) and its implementation has 
recently helped solve a difficult protein structure of 
high biological significance (Bjorkman, Saper, 
Samraoui, Bennet, Strominger & Wiley, 1987). This 
latter formulation will now be incorporated into the 
statistical framework of the ME method. As each 
crystal form may here comprise an isomorphous 
family, and as known fragments are also accommo- 
dated, this final level of generalization may be viewed 
as an attempt at a 'grand unification' of all phase- 
determination procedures. 

6.1. General theory 

Let crystal form C (~e= 1 , . . . ,  u) be characterized 
by its lattice gt (e), defined by the coordinates in some 
common reference frame of its basis vectors 
ace), b (e), c(e); by its space group G ~e) of symmetry 
operations ,-'ge(R(e),-get'e)) ", and possibly by a set F (e) -- 

(•) 
{Tp~ ]Pe= 1 , . . . ,  re} of local non-crystallographic 
symmetry operations (C(p e), d~pee)). Let x (e) denote the 
real-space position vector 

x~e)a(e) + x~e)b(e) + x~3e)c(e); 

let h (e) denote the reciprocal-space lattice vector 

h~e)a*(e) + h~e)b*(e) + h(3e)e*(e); 

and let H (e) be a set of unique non-origin reflexions 
for form E; H will then denote the set-theoretic union 
of all the H (e) for g =  1 , . . . ,  z,. Finally let ~(e)(x(e)) 
and ~(e)nc(x(e)) respectively denote the vectors of 
trigonometric structure-factor expressions in the 
absence (§ 0.3) and the presence (§ 5.2) of non-crys- 
tallographic symmetries F (e) for reflexions h (e) ~ H (e~. 

Let the unknown macromolecule be described in 
some other reference frame, in known or param- 
etrized relation to the first, as a heterogeneous 
assembly of Nj atoms of species j (j = 1 , . . . ,  c) with 
prior distribution mj(x) confined to a bounded region 
U. An atom placed at random position x6 U will 
induce the placement of an atom at 

x (e) = L(e)x = A(e)x + 8 (e) (6.1) 

in the basic subunit of each crystal form C, where the 
'clutching' transformations L (e) can be calculated 
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from the global geometry of all the lattices and 
frames; these atoms will in turn be expanded by the 
local and crystallographic symmetries of fo rm/ .  The ^ 
vector ~(x) of 'clutched' trigonometric structure- 
factor expressions for the v crystal forms simul- 
taneously is therefore 

~(x) = ~) ~(e)~(L(e)x) (6.2) 
~'=1 

where O denotes a columnwise direct sum, and where 
x is the same for all g (hence the term 'clutched'). 

The m.g.f, for its distribution/~ is 

/Q(t) = I m(x) exp [i.~(x)] d3x. (6.3) 
D 

Because of the clutching relations (6.1), the covari- 
ance structure of this distribution is very rich. By 
using generalized structure-factor algebra across crys- 
tal forms, it is easily seen that mixed second-order 
moments in the covariance matrix V2 log (M) contain 
contributions of the form 

(g) (g) (e) T (g) (R( ,e ' ) ( -qe '}A( t ' ) ' lTh(~a ' )"  I ~d[(RgeCpeA ) h - , - ' g e ' ~ p , ' -  " "" 

which sample the interference function q3 at generic 
(i.e. non-integral) points of reciprocal space since the 
different reciprocal lattices ~.(e)  are non-congruent. 
The situation is thus the same as that created by 
non-crystallographic symmetry with a single form: 
the covariance matrix is singular, its regular subspace 
being the image subspace (W~) of the multiple crystal 
form H matrix or of the equivalent averaging 
operator. 

We may now introduce the scattering-factor 
matrices f~ke~ describing the scattering power with 
which atoms of species j (j = 1 , . . . ,  c) contribute to 
member ke ( ke = 1 , . . . ,  de) of the isomorphous family 
attached to crystal form /. These matrices may be 
aggregated by columnwise direct sum into the global 
matrices describing the interconnections between all 
the channels labelled by j, k, g: 

e=, , "jke]. (6.4) 

The contribution ~(j(x) of a macromolecule atom of 
species j placed at x ~ U to the global structure-factor 
vector 

~'=1 ta=l \ k e = l  

is then 
Xj(x) = fj~(x), (6.5) 

and the m.g.f, of its distribution is 

~) = Mj[(fj) u] (6.6) 

where fi is segmented in the same way as F: 

° 6u,,, 6 ( ;  
te=l / = !  ke=l UkE ] "  

Therefore, the m.g.f, for the distribution of the 
macromolecular component of F is 

~ m a c ( ~ )  = I~I [ ~ j ( ~ ) ] N j .  (6.7) 
j = l  

If now each crystal form g contains N(o e) atoms of 
solvent, with prior distribution m~oe)(x (:)) and scatter- 
ing-factor matrix 

(" / f~o e) @ tie) 
lOk E , 

kr= 1 / 

the m.g.f, of its solvent contribution to F C~) is 

y(e) :, ce)~ [Z(o:)(u(g))]N~o:' (6.8) solv\ u 1 

where Z(o e) is calculated in the usual way (2.3) from 
m(o :) .  

Finally, the m.g.f, for the joint distribution ~(F)  is 

~(f i )  = ~mac(fi)[ ~) ~so,v~UOr(:) :. (e)al, j (6.9) 
g=l  

where @ denotes the tensor product of functions of 
the distinct segments u Ce) of the full vector fi of carry- 
ing variables. It would be a simple matter, involving 
extra notation but no new principles, to incorporate 
into this model the presence of known fragments 
(common or not to all the forms, and obeying or not 
their non-crystallographic symmetry) or to have 
several different kinds of subunits shared in various 
ways by the different crystal forms. 

We may apply the regularization procedures of 
§§ 1.2, 2.3 and 5.1 to the Hessian matrix V 2 (log Lr) 
and project accordingly the recentring data F* to 
ensure that the saddlepoint condition 

V (log ~ )  = F* (6.10) 

can be fulfilled for a unique ~, (segmented as fi above) 
in the regular subspace. The updated ME distribu- 
tions of the various types of atoms will then be 

q(0g, M E (X(e))  = [ m (0e)(x (e,) / Z(oe)(k) ] 

×exp [k(e).fCo:)~ce)(xCe))] (6.11) 

for the solvent atoms in crystal form g, and 

qME(x) = [mr(x)/Z~(k)] exp [k.i~(x)] 

( j = l , . . . , c )  (6.12) 

for the atoms of the macromolecule common to all 
the crystal forms. 

The saddlepoint approximation of ~ at ~'* is then 

~sP(~*) = exp (~)[det  (2rrQ)]- ' /2 (6.13) 
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where 

5~ = log k.F* 

= ~ NjoqOmj(qME)+ ~ N~Oe)~,,~o"(q~oe)ME) (6.14) 
j=l t=l 

is the weighted sum of the relative entropies associ- 
ated respectively with the macromolecule atoms and 
with the solvent atoms of the various crystal forms; 
and where 

Q = reg [ V ~  (log ~) ]  (6.15) 

is constructed in the usual way [by a straightforward 
adaptation of (3.12)] from the scattering-factor 
matrices and from the trigonometric covariance 
matrices V 2(log/~7/) and V 2(log M~o e)) for g =  
1 , . . . ,  u whose elements are calculable by generalized 
structure-factor algebra. 

6.2. Scope of the statistical theory of multiple 
crystal forms 

The same remarks apply to the above treatment as 
those made in § 5.2. The previous non-statistical 
theory only provided an invariance condition F = HF 
or p = Bp; whereas we now have the means of assign- 
ing different probabilities to different sets of structure 
factors obeying this condition. Phase combination 
occurs automatically in the construction of ~sP, and 
its result is presented as a joint distribution; whereas 
the current procedure works on each reflexion 
independently, and so ignores phase correlations. 
Finally, the equivalence of the various copies of the 
unknown molecule(s) is automatically preserved in 
the ME updating process, and thus in the extrapolated 
structure factors, so that conditional distributions 
~SP(FK ]FH = b'*H) enforce it in advance during phase 
extension. Therefore, the corresponding likelihood 
functions will again allow the identification of the 
geometrical relations between the crystal forms, and 
the refinement of the phase values in F*H once the 
geometry has been characterized. This will be done 
in paper II. 

6.3. Treatment of non-isomorphism due to 
lattice distortions 

The lack of isomorphism between heavy-atom 
derivatives and native crystals of macromolecules is 
a ubiquitous problem in the use of the MIR method. 
If the crystal lattice is left undistorted by the substitu- 
tion, it was shown in § 3 that an equal mixture of 
positive and negative 'clutter' atoms could be used 
to represent the statistical effects of local distortions 
of the native structure, which are usually dealt with 
via the Blow & Crick (1959) lack-of-isomorphism 
parameter. When heavy-atom substitution distorts the 

crystal lattice, however, no treatment has so far been 
available. 

Clearly, what has been missing so far is the 'statis- 
tical interpolation' device (§ 5.3) which is the basis 
for the results presented in §§ 5 and 6. In fact, it 
suffices to treat the native structure and its lattice- 
distorted derivatives as different crystal forms (rep- 
resenting whatever substitution has occurred by 

l,,(t)~ means of the scattering-factor matrices ljke} to obtain 
a completely general treatment of non-isomorphous 
derivatives. The knowledge of the molecular boundary 
is a necessary prerequisite to the use of this method, 
since its continuous transform (the interference func- 
tion) is the active agent in the statistical interpolation 
of structure factors between non-isomorphous 
reciprocal lattices. 

Since the preparation of heavy-atom derivatives of 
protein crystals, or the changes of mother-liquor com- 
position used for the purpose of solvent-contrast vari- 
ation, frequently cause unwanted changes of unit-cell 
parameters, this novel possibility of dealing with lat- 
tice distortions should be able to rescue many difficult 
macromolecular structure determinations. 

7. Summary 

This section will summarize briefy some of the more 
important aspects of the derivations presented above. 

7.1. Effective computability 

All the mathematical entities handled in this work 
are effectively computable. In particular, the universal 
procedure for constructing the saddlepoint approxi- 
mation ~SP(F*) runs as follows: 

(1) update the initial distributions of all classes of 
random atoms so as to fulfil the multichannel saddle- 
point (or maximum-entropy) condition; 

(2) compute the total relative entropy 3° as the 
N-weighted sum of the entropies of these updated 
distributions relative to the initial ones; 

(3) compute the trigonometric covariance matrices 
from the Fourier coefficients of these ME distribu- 
tions by generalized structure-factor algebra; 

(4) compute the global covariance matrix from the 
trigonometric matrices and the scattering-factor 
matrices, and regularize it to get Q; 

(5) compute 

~SP(F*) = e~e[det (27rQ)] -~/2. 

All these operations can be carried out numerically 
on a large scale by existing methods. 

7.2. Universality, basis-set size, and non-uniformity 

The procedure given is applicable to any collection 
of reflexions, in any space group(s), in any situation 
encountered in practice. It is no longer necessary to 
derive large numbers of lengthy algebraic formulae 
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for small sets of reflexions under narrowly defined 
assumptions, then to write as many computer pro- 
grams to implement them: numerical results can be 
obtained directly through a unique computational 
scheme. 

Large numbers of reflexions may be considered 
simultaneously: up to a few hundred with ordinary 
matrix-inversion methods, and several tens of 
thousands if the inversion of the covariance matrix 
and the evaluation of its determinant are carried out 
by Fourier-transform methods. Such 'large-base' 
j.p.d.'s can capture strong phase relations even for 
macromolecules, as was demonstrated in 
MEFDM, § 7.3. 

Non-uniform distributions of atoms play an essen- 
tial role in this approach. The possibility of handling 
them correctly gives access to sources of phase rela- 
tions for which no statistical theory had yet been 
formulated: solvent flattening, excluded volume 
effects of fragments, non-crystallographic symmetry 
and multiple crystal forms. In the latter two cases, 
non-uniform prior distributions of atoms must be 
handled at the outset, even in the absence of explicit 
phase information, since it is necessary to break the 
crystal periodicity in order to localize the basic sub- 
unit to which a particular set of local symmetries is 
to be applied. 

Problems of rational dependence may be dealt with 
in a variety of ways, depending on their precise nature. 
Heavy atoms in special positions may be treated as 
known fragments; heavy atoms in general but rational 
positions may be first detected then represented 
through a separate channel; exact geometric correla- 
tions between atoms may be treated as non-crystallo- 
graphic symmetries; while stacking effects may be 
modelled through non-uniform prior distributions. 
Only the case of probabilistic correlations between 
atoms eludes the present treatment, because it violates 
the assumption of the statistical independence of the 
atoms. 

7.3. Multichannel structure 

The great diversity of known sources of phase 
information has been accommodated by creating a 
hierarchical structure of 'channels': for different atom 
types, for different molecular fragments, for different 
members of an isomorphous family, and for different 
crystal forms. The interconnections between the ran- 
dom atom channels and the various data channels 
are specified through scattering-factor matrices, 
which play a role similar to that of the 'design matrix' 
in multivariate statistical analysis. This multichannel 
approach lends itself well to structured programming. 

7.4. Normalization 

Well known difficulties in the theory of normaliz- 
ation for heterogeneous structures have been 

examined from a new standpoint. It has been shown 
that no satisfactory answer can be hoped for within 
the classical theory: the solution resides in the use of 
the multichannel approach, where each atom type is 
assigned its own non-uniform distribution, with 
unnormalized data. 

7.5. Phase combination 

The scheme of Hendrickson & Lattman (1970) for 
combining various forms of phase information uses 
independent phase probability densities for each 
reflexion and thus cannot accommodate statistical 
relations between these phases. Here, all available 
sources of phase information are incorporated, at a 
consistent level of approximation, into a joint distri- 
bution of all structure factors, which can accommo- 
date these relations without any loss of information. 
The detailed formal structure of this distribution will 
be examined in paper II. 

7.6. Determinantal inequalities 

The possibility of preserving the strict positive 
definiteness of the Hessian matrix V 2 (log ~r) by 
suitable regularization has repeatedly pointed out the 
existence of families of determinantal inequalities, 
even in circumstances (e.g. complex scattering fac- 
tors) where none would have been expected to hold. 
They follow from the positivity of the various prior 
distributions of random atoms, and not from the 
positivity of the electron (or scattering-length) 
density. 

7.7. Relation to maximum-entropy theory 

The present approach views entropy maximization 
as an accessory calculation to the use of the saddle- 
point method for constructing joint and conditional 
distributions of structure factors and likelihood func- 
tions, which are the basic devices of Bayesian infer- 
ence methods. It treats the updated distributions qME 
as versatile computational intermediates rather than 
as 'preferred maps' in the terminology of Livesey & 
Skilling (1985). The orthodox ME viewpoint, as 
applied to the treatment of heterogeneous structures 
(Gull, Livesey & Sivia, 1987) and of partial structures 
(Marvin, Bryan & Nave, 1987), has been shown here 
to fall short of giving quantitatively correct results, 
indicating that the ME theory on its own may not 
always have the unambiguous heuristic power which 
has been claimed on its behalf. 

The study of vanishing principal curvatures in the 
Hessian matrix V 2 (log ~ ) ,  and their removal by regu- 
larization in order to recover the uniqueness of the 
saddlepoint, has shed light on the almost magical 
robustness properties of the ME method stated by 
Jaynes (1968), showing them to be based on the 
implicit use of generalized inverses of matrices. 
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Finally, the ME method only 'looks back' at the 
cost of accommodating the explicit trial phase 
assumptions contained in F*; while the likelihood 
functions we will construct from ~ S P  a r e  able to 'look 
ahead' in a global way at the information contained 
in the yet unphased moduli, thus providing the basic 
feedback mechanism of Bayesian methodology. Since 
the saddlepoint approximation ~sP involves not only 
the Shannon entropy 5¢, but also a normalization term 
[det (27rQ)] 1/2 (related to the Burg entropy) which 
plays an important role in likelihood calculations, it 
should be clear that the present Bayesian approach 
goes well beyond a naive reliance on entropy 
maximization. 

Concluding remarks 

The goal defined at the outset has been reached: a 
universal procedure has been described which allows 
the explicit numerical computation of the saddlepoint 
approximation to the joint probability distribution of 
an arbitrary collection of structure-factor values. This 
has been accomplished in a setting of sufficient gener- 
ality to encompass all currently used sources of phase 
information. 

The resulting expression for the joint distribution 
has been shown to extend and to improve upon all 
existing statistical approaches to the phase problem, 
and to provide an optimal procedure for combining 
all sources of phase information available in any given 
instance. 

This merging of all phasing methods within a 
unique formalism offers the guarantee that the forth- 
coming derivations of conditional distributions and 
likelihood functions from the universal j.p.d. 
expression, to be presented in paper II, will automati- 
cally apply to all combinations of phasing techniques 
without requiring special developments for each of 
them. 

I am indebted to Trinity College, Cambridge, 
England for a Visiting Fellowship which made poss- 
ible the writing of this paper. 

APPENDIX 

Generalized structure-factor algebra for the 
calculation of trigonometric moments 

Given the distribution re(x) of random atomic posi- 
tions, it is possible to calculate all moments such as 
(0.6) from the Fourier coefficients of m(x) thanks to 
the fact that the functions E(h,  x) defined by (0.2) 
form an algebra, i.e. that products of such functions 
may be expressed as linear combinations of functions 
of the same type. This 'structure-factor algebra' was 
first investigated by Bertaut (1955b, 1956, 1959) and 
Bertaut & Waser (1957) and has recently been re- 

examined by Giacovazzo (1980). Shmueli & Kaldor 
(1981, 1983) computed even moments of the right- 
hand side of (0.2) with [Gx[ = 1. All these authors 
compiled tables of linearization coefficients for the 
various classes of reflexions in different families of 
space groups, but this classification carries implicitly 
the assumption that re(x) is uniform, so that the only 
non-vanishing moments are those for which a null 
triplet of Miller indices is generated during lineariz- 
ation. 

In the present work, re(x) is non-uniform, so that 
non-vanishing moments become the rule rather than the 
exception. However, the original calculation of Ber- 
taut may still be used to express the general moment 
in terms of the Fourier coefficients of m(x). This 
calculation is then generalized so as to deal with 
non-crystallographic symmetries and multiple crystal 
forms. 

A.1. Preliminaries 

Using the definitions and conventions of §§ 0.0 and 
0.1, we may rewrite (0.3) as 

~(x) = ~e[exp ( -  itoj)-~(hj, x)] (3.1.1) 

where hj denotes the Miller indices pertaining to the 
j th component of lj. If h(r) designates the reflexion 
numbered r in H, then (A.1.1) is equivalent to (0.3) if 

h 2 r _  1 = h(r), O.)2r-  1 = O, r = 1 , . . . ,  n~, 

h 2 r  = h(r), (.02r = ~r/2, r = 1 , . . . ,  na, 

h2.~+~=h(n~+s), w2no+~=OEh(n~+s)], 
s = l , . . . , n c .  

In other words, the a ' s  and fl's in (0.1a) may be 
treated as particular cases of y's in (0.1b). This sim- 
plification has the advantage of allowing more flexi- 
bility in the choice of coordinates in R"; for example, 
it is possible to choose O.)2r_l=~0h(r) and to2r = 
q~h(r) + 7r/2 SO as to define a radial and an azimuthal 
direction with respect to some trial phase ~o; it can 
also be used to handle origin-fixing choices in the 
form of restrictions to linear subspaces of the full 
structure-factor space. 

It will be convenient to introduce the notation 

eh(x)- e (h , x ) -  exp (27rih.x). (A.1.2) 

This function has the fundamental properties 

conjg (eh)= e-h (A.1.3a) 

ehek = eh+k (A.1.3b) 

eh(Sgx)=eh(t~)e(Rrh, x). (A.1.3c) 

The trigonometric structure-factor expression (0.2) 
may be written 

-=(h,x) =[Gxl-1 Y~ e(h, S~x) (A.1.4) 
g e G  
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and it enjoys the property of being invariant under G: 

_W(h, Sgx) = -~(h, x) Vg~G. (3.1.5) 

is the kernel of the discrete inverse Fourier 
transform o~b ~ for space group G: 

Fh= ~ _W(h,x)p,,= o~bt[p](h) (A.1.6) 
x E O  

where the summation is over a crystallographic grid. 

A.2. Trigonometric moments of non-uniform 
distributions of atoms 

Let u, v, w, . . .  be integers between 1 and n =  
2 na + n~. 

The first-order moments of the distribution p of 
are easily obtained since by (A.I.1) and (A.1.6) 

(~)= ~e{exp (-itoj)~[m](hj)} (A.2.1) 

so that (6) is essentially the vector of Fourier 
coefficients of m(x) for reflexions h in H. In tradi- 
tional treatments of structure-factor algebra re(x) is 
uniform, and so (~)=0;  but here (~} may take any 
value compatible with the positivity of re(x). 

The second-order moments require Bertaurs 
linearization method. Let us first write 

¢.(x)~:o(x) = ~e[exp (-i~o,,)~(hu, x)] 

x ~e[exp (-itoo)-W(ho, x)] 

= ½{~e[exp {-/(to.  + too)} 

x -='(h,, x)-W(ho, x)] 

+ ~e[exp {-i(wu-too) } 

x ~ ( h , ,  x)-='(-ho, x)]}, (3.2.2) 

so that the calculation of (~:,~o} is reduced to that of 
quantities of the form (--~h.~ho), where e = +1. The 
latter proceeds as follows: 

~.,,(x)-%.o(x) 

=[IGxl-' Y, e(h., S~x) 1 
g~, ~ G 

IGx1-1 E e(eho, Sgox)] 
g v ~ G  

gu ~ G g e  G 

=IG~I -~ ~ {e(h.,Sgx) 
g . ~  O 

x ~ e(eho, tg)e  r } (eRg ho, SguX ) 
g ~ G  

with go = gg, 

by (A.1.3c) 

=lGxl-~ ~. e(eh~, tg) 
g E G  

x IG~l -~ y. e(h.+~Rgh~,S,,x) 
gu E G 

by (3.1.3b) 
T =[Gxl-~ ~ e(eho, tg)-='(h,+eRgho, x). (3.2.3) 

g e G  

This is Bertaurs fundamental linearization formula. 
It immediately yields, by (A.1.6), 

(..,~h ,.,~ehv} ---- [ Gx I - l ~-'~ e(eh~,tg)~[m] 
g E G  

T x (h, + eRg ho, x) (A.2.4) 

so that this quantity, denoted (u, v, euo) below, is 
calculable from the Fourier coefficients of the prior 
distribution of atoms re(x). Relation (A.2.2) then 
yields the moments originally sought: 

(~:u~o)=½ Y'. ~e{exp[-i(to.+e.vtOo)](u,v,e.o)}. 
e u v = + l  

(A.2.5) 

This expression is entirely general and holds for any 
admixture of centric and acentric reflexions in any 
space group. 

By repeated application of this procedure, products 
of any number of ~:'s may be linearized, and the 
corresponding moments (0.6) may be evaluated 
numerically from the Fourier coefficients of re(x). 
Cumulants (0.7) may be obtained by using their stan- 
dard expressions in terms of moments (e.g. Klug, 
1958). 

A.3. Non-crystallographic symmetries 

In the presence of a set F of non-crystallographic 
symmetries, -=' and ~ become respectively _~,c (5.3) 
and ~"c (5.4), between which relations (A.I.1) and 
(A.2.2) contine to hold. The counterpart of (A.1.4) is 
n O W  

p = l  g E G  

=lGxl-' ~ e(h, tg) 
g e G  

p = !  

(A.3.1) 

However, because of the non-crystallographic 
character of F, the amalgamation of the transforma- 
tions in G and F fails to produce a closed group. As 
a result the rearrangement on the second line of 
(A.2.3), which is a finite group permutation, cannot 

=.nc=.nc does not take place, so that the product -- h,,-- ~h~, 
admit a linearization in terms of -='n~'s but only in 
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terms of e's: 

~'nc(h X) ~'nc(ehv, x) \~u,  

=lOxl-21rxl E E i i e[h.,Rgdp+tg.] 
g u ~ G  g o n G  p u = l  p v = l  

x e[eh~, Rg dpo +tgo] 

×e[(Rg.Cp.)rh~+e(Rg Cpo)rho, x] (3.3.2) 

where the vectors (RgCp)rh are in general non- 
integral. These circumstances cause no difficulty, 
because the prior distribution re(x) of the atoms 
obeying the local symmetry F is now localized (non- 
periodic), so that its continuous transform o~  l [ m ] can 
be defined unambiguously and calculated numeri- 
cally. We may thus complete the calculation by 
writing 

(~'nC(hu,.)~nC(euvhv,. )) 

= 2 ~ i i e[h.,Rgdp.+tg.] 
g , ~ G  gt, c G  pu=l p v = l  

x e[e,,,ho, Rgodp~ +tgo] 

× x[I Gxl- l rx1-2 m ][ (Rg Cp.) r h  u 

+ e~ (Rgo Cpo) rho] (A.3.3) 

and substituting this quantity (u, v, e~o) into (A.2.5) 
to get the desired moment (scnc~:n¢). Recursion yields 
moments (hence cumulants) of any order. 

Once again, this result is completely general in that 
it accommodates any space group G, any local sym- 
metry F, any non-uniform distribution re(x), and any 
admixture of centric and acentric reflexions H. 

A.4. Multiple crystal forms 

We now wish to evaluate moments of the com- 
ponents of the 'clutched' structure-factor contribu- 
tions (6.2), i.e. quantities of the form 

(~:(:) nc ~(:')nc) ( A.4.1 ) 

where 

Sc~)nC(x) = ~e[exp (--:,to,,'(e)~:-,m'(e)"~:L(e)t,,,, , L(e)x)] 

(A.4.2) 
and r,( 
~<e)"C(h<e),x)=lr~e)l-1 E IG~e)l-I 

p ¢ =  1 

~ge L lpe ~L x ) J ~ ) ,  X ge~GCe) e{h (e), ,-,(e)~ ,.,(e),-ce) ,~. 

(A.4.3) 

the L ~e) being the clutching transformations (6.1), and 
where u lies in the index range for form t' while v 
lies on that for form f'. 

If g =  g', we may use (A.3.3) after incorporating 
L (e) into the local symmetry F (e) of form g. Otherwise 

a brute-force expansion generalizing (A.3.2), fol- 
lowed by evaluations of the continuous transform 
~:~-l[m], yields 

(~(g)nc(h(f)  ' • )~(g')nC(euvh(f') ' . )) 

r u r v 

- Z E Z E e[h~ e) (e) (e) (e) - , Rg~ (Cp. 8 
gu ~ G gv e G Pu = 1 Pt, = 1 

d<e)~ +t~e)] -k- _p~ ! 

× e [ -  L(e') (e') (e') (e') d~oe'))+ (e') euvnv , Rg ° (Cpo 8 + tgo ] 

x ~;-~'[ G~ e) -I G~e')-1 Fie)-, Fie,)-'m] 

X [ ( R ( g ) F ( g ) A ( g ) ] T h ( g )  
k x ~ ' g u  ~ P u  - - P u  / ' ' U  

_ :n(e'),-,(e').(e,)~ r,_ (e')l (A.4.4) 
"-~ tZuvl, l t l g  ° qk..pt , l ,~pv ] !1 o J .  

The moment (A.4.1) is then obtained by means of 
formula (A.2.2). 

By recursion, moments (and so cumulants) of any 
order may be evaluated numerically from the Fourier 
coefficients of m(x). 

This completes the task of extending Bertaut's 
structure-factor algebra in order to calculate explicitly 
the moments and cumulants required for the effective 
computation of the saddlepoint approximations to 
the most general joint distribution considered in this 
paper. 
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Abstract 

The problem of phase refinement and extension at 
very low resolution (30-25 ~)  is treated with an 
algorithm that combines a maximum-entropy 
approach, a binary modelling of the electron density, 
refinement of the proposed map against the observed 
amplitudes and solvent flattening outside a molecular 
envelope. The algorithm is applied to data for the 
complex of aspartyl-tRNA and aspartyl-tRNA syn- 
thetase in three different cases: (1) X-ray amplitudes 
and phases calculated from a partial model; 
(2) mixed observed and calculated X-ray ampli- 
tudes and phases from a partial model; and 
(3) observed neutron amplitudes and phases from a 
very approximate model. The change of correlation 
with the correct map at 30 A resolution is used as a 
measure of correctness. Upon application of the 
algorithm, this correlation changes from 59 to 97% 
in case 1, from 59 to 77% in case 2 and from 72 to 
90% in case 3. In all cases, the method is successful 
in correcting large phase errors, deleting noise regions 
and producing the correct low-resolution molecular 
image. 

Introduction 

Macromolecular crystallography is a unique tool for 
imaging the structures of protein and nucleic acids. 

0108-7673/88/040545-07503.00 

Images are obtained from the Fourier transform of 
the diffraction pattern of the crystal. In the classical 
picture the scattered radiation consists of X-rays at 
a resolution where individual atoms are close to being 
resolved, and the phases with their error estimation 
are obtained by the multiple-isomorphous-replace- 
ment (MIR) method (Blow & Crick, 1959). 

When all the necessary conditions are fulfilled, the 
classical approach is extremely powerful and a very 
detailed image of the macromolecule is obtained. 
However, it is not always possible to obtain high- 
quality crystals that diffract to high resolution and 
the necessary heavy-atom derivatives. In this case, 
alternative phasing techniques can be used. These are 
varied, and the following examples can be cited (the 
list is clearly not exhaustive). 

(1) Electron microscopy of an ordered specimen 
can give a 3D image of 7 ~ resolution (Henderson 
& Unwin, 1975), though most of the image reconstruc- 
tions have been limited to about 25 ~ resolution. 

(2) A low-resolution translation search with a 
crude model can generate phases between 30 and 
15 ~ resolution (Podjarny et al., 1987). 

(3) Neutron diffraction with different D20/H20  
levels can be used instead of heavy atoms, if one 
component is known. Phases are generally good to 
30/~, resolution, and can extend as far as 15 
resolution (Bentley, Lewitt-Bentley, Finch, Podjarny 
& Roth, 1984). 
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